Article Outline
RでIMFの世界経済見通し(WEO)データを扱う(その2)
(データ)
mitsuoxv/imf-weo data -> data_2304.rda
2023/6/2 BRICs(4国)からBRICS(5国)に変更
(参考)
長期経済統計から見た21世紀の世界経済 : 1950~2100年の長期展望と経済・社会の課題
世界の名目GDPの推移: (単位: 10億ドル) と (購買力平価換算)
G7のGDP/世界全体GDP BRICSのGDP 対世界GDP比: (単位: 10億ドル) と (購買力平価換算)
G7、BRICS 各国GDP: (単位: 10億ドル) と (購買力平価換算)
G7、BRICS 各国一人当たりGDP: (単位: 1ドル) と (購買力平価換算)
Rコード
パッケージとデータの読み込み
require(ggplot2)
require(cowplot)
require(scales)
#
load("data_2304.rda")
#load("data_2304lite.rda")
#data_2304 <- data_2304lite
#
url="https://raw.githubusercontent.com/statrstart/statrstart.github.com/master/source/data/"
source(paste0(url,"WEOcountry.R"))
# これでデータが読み込まれる。
head(WEOcountry)
#ダウンロードした場合
#source("WEOcountry.R")
# 他のことにも使えるようにWEO(IMF)コードのないデータもあるので、
# 今回は、WEO(IMF)コードが欠損しているデータを取り除く
WEOcountry <- WEOcountry[!is.na(WEOcountry$WEO) , ]
データの抽出
# GDP: data_2304$concept=="NGDPD"
ngdpd<-data_2304[data_2304$concept=="NGDPD",c("ref_area","year","value","scale","lastactualdate")]
# 単位: ngdpd$scale== 1e+09 <--- 10億ドル
# scaleは削除
ngdpd<- ngdpd[,c("ref_area","year","value","lastactualdate")]
# GDP: data_2304$concept=="PPPGDP"
PPPGDP<-data_2304[data_2304$concept=="PPPGDP",c("ref_area","year","value","scale","lastactualdate")]
# 単位: PPPGDP$scale== 1e+09 <--- 10億ドル
# scaleは削除
PPPGDP<- PPPGDP[,c("ref_area","year","value","lastactualdate")]
#
# NGDPDの国データを抽出、WEOcountryとマージ
ngdpdC<-merge(ngdpd,WEOcountry,by.x="ref_area",by.y="WEO")
#
# PPPGDPの国データを抽出、WEOcountryとマージ
PPPGDPC<-merge(PPPGDP,WEOcountry,by.x="ref_area",by.y="WEO")
#
# 一人当たりGDP(ドル): data_2304$concept=="NGDPDPC"
NGDPDPC<-data_2304[data_2304$concept=="NGDPDPC",c("ref_area","year","value","scale","lastactualdate")]
# 単位: all(NGDPDPC$scale== 1) 1ドル
# scaleは削除
NGDPDPC<- NGDPDPC[,c("ref_area","year","value","lastactualdate")]
# 一人当たりGDP (購買力平価換算): data_2304$concept=="PPPPC"
PPPPC<-data_2304[data_2304$concept=="PPPPC",c("ref_area","year","value","scale","lastactualdate")]
# scaleは削除
PPPPC<- PPPPC[,c("ref_area","year","value","lastactualdate")]
# NGDPDPCの国データを抽出、WEOcountryとマージ
NGDPDPC_C<-merge(NGDPDPC,WEOcountry,by.x="ref_area",by.y="WEO")
#
# PPPPCの国データを抽出、WEOcountryとマージ
PPPPC_C<-merge(PPPPC,WEOcountry,by.x="ref_area",by.y="WEO")
世界の名目GDPの推移: (単位: 10億ドル) と (購買力平価換算)
# 世界全体GDP
world<- ngdpd[ngdpd$ref_area=="001",]
g1<- ggplot(world,aes(x=year,y=value))+
geom_line()+
labs(x=NULL,y=NULL,title="世界の名目GDP(単位: 10億ドル)の推移") +
scale_y_continuous(labels = comma)+
theme_cowplot(14)
# 世界全体GDP
world<- PPPGDP[PPPGDP$ref_area=="001",]
g2<- ggplot(world,aes(x=year,y=value))+
geom_line()+
ylab("名目GDP(購買力平価換算)") +
labs(x=NULL,y=NULL,title="世界の名目GDP(購買力平価換算)の推移") +
scale_y_continuous(labels = comma)+
theme_cowplot(14)
g <- plot_grid(g1, g2, labels="auto", align="h")
ggsave("imfweo01_1.png", width = 16, height = 8)
G7のGDP/世界全体GDP BRICSのGDP 対世界GDP比: (単位: 10億ドル) と (購買力平価換算)
# G7GDP/世界全体GDP
world<- ngdpd[ngdpd$ref_area=="001",]
g7<- ngdpd[ngdpd$ref_area=="119",]
# yearの一致を確認
all(g7$year==world$year)
g7<- data.frame(Group="G7",year=g7$year,p=g7$value/world$value)
# BRICSGDP/世界全体GDP
BRICS<-ngdpdC[grep("BRA|RUS|IND|CHN|ZAF",ngdpdC$iso3c),]
# year別に足し合わせる
x<- aggregate(BRICS$value,list(BRICS$year),sum,na.rm=TRUE)
colnames(x)<- c("year","value")
all(world$year==x$year)
brics<-data.frame(Group="BRICS",year=x$year,p=x$value/world$value)
#
per=rbind(g7,brics)
per$Group=factor(per$Group,levels=c("G7","BRICS"))
#
g1<- ggplot(per,aes(x=year,y=p,color=Group)) +
geom_line(linewidth=1.5)+
labs(x=NULL,y=NULL,title="名目GDP 対世界比(U.S ドル)") +
scale_y_continuous(labels = percent)+
theme_cowplot(14) +
scale_color_manual(values = c( "#339900","#ff9900")) +
theme(
legend.position = c(.98, .98),
legend.justification = c("right", "top"),
legend.box.just = "right",
legend.margin = margin(6,6,6,6)
)
# G7GDP/世界全体GDP(購買力平価換算)
world<- PPPGDP[PPPGDP$ref_area=="001",]
g7<- PPPGDP[PPPGDP$ref_area=="119",]
# yearの一致を確認
all(g7$year==world$year)
g7<- data.frame(Group="G7",year=g7$year,p=g7$value/world$value)
# BRICSGDP/世界全体GDP(購買力平価換算)
BRICS<-PPPGDPC[grep("BRA|RUS|IND|CHN|ZAF",PPPGDPC$iso3c),]
# year別に足し合わせる
x<- aggregate(BRICS$value,list(BRICS$year),sum,na.rm=TRUE)
colnames(x)<- c("year","value")
all(world$year==x$year)
brics<-data.frame(Group="BRICS",year=x$year,p=x$value/world$value)
#
per=rbind(g7,brics)
per$Group=factor(per$Group,levels=c("BRICS","G7"))
#
g2<- ggplot(per,aes(x=year,y=p,color=Group)) +
geom_line(linewidth=1.5)+
labs(x=NULL,y=NULL,title="名目GDP 対世界比(購買力平価換算)") +
scale_y_continuous(labels = percent)+
theme_cowplot(14) +
scale_color_manual(values = c("#ff9900", "#339900")) +
theme(
legend.position = c(.98, .98),
legend.justification = c("right", "top"),
legend.box.just = "right",
legend.margin = margin(6,6,6,6)
)
g <- plot_grid(g1, g2, labels="auto", align="h")
ggsave("imfweo01_2.png", width = 16, height = 8)
G7、BRICS 各国GDP: (単位: 10億ドル) と (購買力平価換算)
G7BRICS<-ngdpdC[grep("CAN|JPN|USA|FRA|ITA|GBR|DEU|BRA|RUS|IND|CHN|ZAF",ngdpdC$iso3c),]
id<- G7BRICS[G7BRICS$year=="2028",c("Name","value")]
G7BRICS$Name<- factor(G7BRICS$Name,levels=id[order(-id$value),]$Name)
g1<- ggplot(G7BRICS,aes(x=year,y=value,color=Name))+
geom_line()+
labs(x=NULL,y=NULL,title="G7, BRICS: 名目GDP(単位: 10億ドル)",color="Country") +
scale_y_continuous(labels = comma)+
theme_cowplot(14) +
theme(
legend.position = c(.02, .98),
legend.justification = c("left", "top"),
legend.box.just = "left",
legend.margin = margin(6,6,6,6)
)
G7BRICS<-PPPGDPC[grep("CAN|JPN|USA|FRA|ITA|GBR|DEU|BRA|RUS|IND|CHN|ZAF",PPPGDPC$iso3c),]
id<- G7BRICS[G7BRICS$year=="2028",c("Name","value")]
G7BRICS$Name<- factor(G7BRICS$Name,levels=id[order(-id$value),]$Name)
g2<-ggplot(G7BRICS,aes(x=year,y=value,color=Name))+
geom_line()+
labs(x=NULL,y=NULL,title="G7, BRICS: 名目GDP(購買力平価換算)",color="Country") +
scale_y_continuous(labels = comma)+
theme_cowplot(14) +
theme(
legend.position = c(.02, .98),
legend.justification = c("left", "top"),
legend.box.just = "left",
legend.margin = margin(6,6,6,6)
)
g <- plot_grid(g1, g2, labels="auto", align="h")
ggsave("imfweo01_3.png", width = 16, height = 8)
G7、BRICS 各国一人当たりGDP: (単位: 1ドル) と (購買力平価換算)
G7BRICS<-NGDPDPC_C[grep("CAN|JPN|USA|FRA|ITA|GBR|DEU|BRA|RUS|IND|CHN|ZAF",NGDPDPC_C$iso3c),]
id<- G7BRICS[G7BRICS$year=="2028",c("Name","value")]
G7BRICS$Name<- factor(G7BRICS$Name,levels=id[order(-id$value),]$Name)
g1<- ggplot(G7BRICS,aes(x=year,y=value,color=Name))+
geom_line()+
labs(x=NULL,y=NULL,title="G7, BRICS: 一人当たり名目GDP(単位: 1ドル)",color="Country") +
scale_y_continuous(labels = comma)+
theme_cowplot(14) +
theme(
legend.position = c(.02, .98),
legend.justification = c("left", "top"),
legend.box.just = "left",
legend.margin = margin(6,6,6,6)
)
G7BRICS<-PPPPC_C[grep("CAN|JPN|USA|FRA|ITA|GBR|DEU|BRA|RUS|IND|CHN|ZAF",PPPPC_C$iso3c),]
id<- G7BRICS[G7BRICS$year=="2028",c("Name","value")]
G7BRICS$Name<- factor(G7BRICS$Name,levels=id[order(-id$value),]$Name)
g2<-ggplot(G7BRICS,aes(x=year,y=value,color=Name))+
geom_line()+
labs(x=NULL,y=NULL,title="G7, BRICS: 一人当たり名目GDP(購買力平価換算)",color="Country") +
scale_y_continuous(labels = comma)+
theme_cowplot(14) +
theme(
legend.position = c(.02, .98),
legend.justification = c("left", "top"),
legend.box.just = "left",
legend.margin = margin(6,6,6,6)
)
g <- plot_grid(g1, g2, labels="auto", align="h")
ggsave("imfweo01_4.png", width = 16, height = 8)