Article Outline
1.TextCNN基本原理
<img src="https://pic1.zhimg.com/v2-38e6e46009ea88c06465ed0770051c4d_r.jpg" style="zoom: 67%;" />
<img src="https://pic4.zhimg.com/v2-2ea1f0b8b166f31273b26bca3ba8e8b2_r.jpg" style="zoom:67%;" />
主要看第二张图:
- 第一层为输入层,输入是一个$n \times k$的矩阵,图中为$7 \times 5$。其中$n$为句子中的单词数,$k$为词向量维度。词向量可以是预训练好的,也可以在网络中重新开始训练。第一张图中输入有两个矩阵,其中一个使用的预训练好的向量,另一个则作为训练参数。
- 第二层为卷积层,可以把矩阵理解为一张channels为1的图像,使用宽度同词向量维度一样的卷积核去做卷积运算,且卷积核只在高度方向(单词方向).因此每次卷积核滑动的位置都是完整的单词,保证了单词作为语言中最小粒度的合理性。假设词向量维度为embedding_dim,卷积核高度为filter_window_size,则卷积核大小为(embedding_dim,filter_window_size),卷积后的大小为(sequence_len-filter_window_size,1)
- 第三层为卷积层,经过max_pooling后得到一个标量。实际中会使用num_filters卷积核同时卷积,每个卷积核得到的标量拼接在一起形成一个向量。此外,也会使用多个filter_window_size(如图2中3个filter_window_size分别为3、4、5),每个filter_window_size会得到一个向量,最后把所有的向量拼接在一起,然后接一个softmax进行分类。
2. TextCNN实现
import torch
from torch import nn
from torch.nn import functional as F
import math
from torch.utils.data import Dataset,DataLoader
import numpy as np
import random
from sklearn.model_selection import train_test_split
import pandas as pd
import re
from tensorflow.keras.preprocessing import sequence
maxlen=300
batch_size=128
2.1 数据预处理
def textToChars(filePath):
"""
读取文本文件并进行处理
:param filePath:文件路径
:return:
"""
lines = []
df=pd.read_excel(filePath,header=None)
df.columns=['content']
for index, row in df.iterrows():
row=row['content']
row = re.sub("[^\u4e00-\u9fa5]", "", str(row)) # 只保留中文
lines.append(list(row))
return lines
def getWordIndex(vocabPath):
"""
获取word2Index,index2Word
:param vocabPath:词汇文件
:return:
"""
word2Index = {}
with open(vocabPath, encoding="utf-8") as f:
for line in f.readlines():
word2Index[line.strip()] = len(word2Index)
index2Word = dict(zip(word2Index.values(), word2Index.keys()))
return word2Index, index2Word
def lodaData(posFile, negFile, word2Index):
"""
获取训练数据
:param posFile:正样本文件
:param negFile:负样本文件
:param word2Index:
:return:
"""
posLines = textToChars(posFile)
negLines = textToChars(negFile)
posIndexLines = [[word2Index[word] if word2Index.get(word) else 0 for word in line] for line in posLines]
negIndexLines = [[word2Index[word] if word2Index.get(word) else 0 for word in line] for line in negLines]
lines = posIndexLines + negIndexLines
print("训练样本和测试样本共:%d 个"%(len(lines)))
# lens = [len(line) for line in lines]
labels = [1] * len(posIndexLines) + [0] * len(negIndexLines)
padSequences = sequence.pad_sequences(lines, maxlen=maxlen, padding="post", truncating="post")
X_train,X_test,y_train,y_test=train_test_split(padSequences,np.array(labels),test_size=0.2,random_state=42)
return X_train,X_test,y_train,y_test
vocabPath="/content/drive/My Drive/data/vocab.txt"
negFilePath="/content/drive/My Drive/data/text_classify/sentiment/neg.xls"
posFilePath="/content/drive/My Drive/data/text_classify/sentiment/pos.xls"
word2Index, index2Word=getWordIndex(vocabPath)
X_train,X_test,y_train,y_test=lodaData(posFile=posFilePath,negFile=negFilePath,word2Index=word2Index)
print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)
class MyDataset(Dataset):
def __init__(self,features,labels):
"""
features:文本向量化后的特征
labels:标签向量
"""
self.features=features
self.labels=labels
def __len__(self):
return self.features.shape[0]
def __getitem__(self,index):
return self.features[index],self.labels[index]
train_dataset=MyDataset(X_train,y_train)
test_dataset=MyDataset(X_test,y_test)
train_dataloader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
test_dataloader=DataLoader(test_dataset,batch_size=batch_size,shuffle=False)
2.2 TextCNN实现
class TextCnn(nn.Module):
def __init__(self, param: dict):
super(TextCnn, self).__init__()
input_channel = 1 # input channel size
output_channel = param["output_channel"] # output channel size
kernel_size = param["kernel_size"]
vocab_size = param["vocab_size"]
embedding_dim = param["embedding_dim"]
dropout = param["dropout"]
class_num = param["class_num"]
self.param = param
self.embedding = nn.Embedding(vocab_size, embedding_dim,padding_idx=0)
self.conv1 = nn.Conv2d(input_channel, output_channel, (kernel_size[0], embedding_dim))
self.conv2 = nn.Conv2d(input_channel, output_channel, (kernel_size[1], embedding_dim))
self.conv3 = nn.Conv2d(input_channel, output_channel, (kernel_size[2], embedding_dim))
self.dropout = nn.Dropout(dropout)
self.fc1 = nn.Linear(len(kernel_size) * output_channel, class_num)
def init_embedding(self, embedding_matrix):
self.embedding.weight = nn.Parameter(torch.Tensor(embedding_matrix))
@staticmethod
def conv_pool(x, conv):
"""
卷积+池化
:param x:[batch_size,1,sequence_length,embedding_dim]
:param conv:
:return:
"""
x = conv(x) # 卷积, [batch_size,output_channel,h_out,1]
x = F.relu((x.squeeze(3))) # 去掉最后一维,[batch_size,output_channel,h_out]
x = F.max_pool1d(x, x.size(2)).squeeze(2) # [batch_size,output_channel]
return x
def forward(self, x):
"""
前向传播
:param x:[batch_size,sequence_length]
:return:
"""
x = self.embedding(x) # [batch_size,sequence_length,embedding_dim]
x = x.unsqueeze(1) # 增加一个channel维度 [batch_size,1,sequence_length,embedding_dim]
x1 = self.conv_pool(x, self.conv1) # [batch_size,output_channel]
x2 = self.conv_pool(x, self.conv2) # [batch_size,output_channel]
x3 = self.conv_pool(x, self.conv3) # [batch_size,output_channel]
x = torch.cat((x1, x2, x3), 1) # [batch_size,output_channel*3]
x = self.dropout(x)
logit = F.log_softmax(self.fc1(x), dim=1)
return logit
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
2.3 模型训练
textCNNParams={
"vocab_size":len(word2Index),
"embedding_dim":100,
"class_num":2,
"output_channel":4,
"kernel_size":[3,4,5],
"dropout":0.2
}
net=TextCnn(textCNNParams)
# net.init_weights()
net.cuda()
optimizer=torch.optim.SGD(net.parameters(),lr=0.01)
criterion=nn.NLLLoss()
for epoch in range(10):
total_train_loss=[]
net.train()
for i,(feature,label) in enumerate(train_dataloader):
feature=feature.cuda()
label=label.cuda()
y_pred=net(feature.long()) #前向计算
loss=criterion(y_pred,label) #计算损失
optimizer.zero_grad() #清除梯度
loss.backward() #计算梯度,误差回传
optimizer.step() #更新参数
total_train_loss.append(loss.data.item())
total_valid_loss=[]
pred_true_labels=0
net.eval()
for i,(feature_test,label_test) in enumerate(test_dataloader):
feature_test=feature_test.cuda()
label_test=label_test.cuda()
with torch.no_grad():
pred_test=net(feature_test.long())
test_loss=criterion(pred_test,label_test)
total_valid_loss.append(test_loss.data.item())
# accu=torch.sum((torch.argmax(pred_test,dim=1)==label_test)).data.item()/feature_test.shape[0]
pred_true_labels+=torch.sum(torch.argmax(pred_test,dim=1)==label_test).data.item()
print("epoch:{},train_loss:{},test_loss:{},accuracy:{}".format(epoch,np.mean(total_train_loss),np.mean(total_valid_loss),pred_true_labels/len(test_dataset)))
2.4 模型测试
def predict_one(sentence,net,word2Index):
sentence=re.sub("[^\u4e00-\u9fa5]", "", str(sentence)) # 只保留中文
print(sentence)
sentence=[word2Index[word] if word2Index.get(word) else 0 for word in sentence]
sentence=sentence+[0]*(maxlen-len(sentence)) if len(sentence)<maxlen else sentence[0:300]
print(sentence)
sentence=torch.tensor(np.array(sentence)).view(-1,len(sentence)).cuda()
label=torch.argmax(net(sentence),dim=1).data.item()
print(label)
sentence="一次很不爽的购物,页面上说是第二天能到货,结果货是从陕西发出的,卖家完全知道第二天根本到不了货。多处提到送货入户还有100%送货入户也没有兑现,与客服联系多日,还是把皮球踢到快递公司。算是一个教训吧。"
predict_one(sentence,net,word2Index)
代码:https://github.com/chongzicbo/nlp-ml-dl-notes/blob/master/code/textclassification/text_cnn.ipynb