Article Outline
Python matplotlib example 'benchmark new auto legend locator'
Functions in program:
def draw_polygon(prng, N_edge_max, extent, **kwargs):
def draw_collection(coll, ax=None):
def draw_patches(patch_list, ax=None):
def draw_hist(data, ax=None, **kwargs):
def _new_auto_legend_data(self):
def _former_auto_legend_data(self):
Modules used in program:
import pprofile # === pprofile version ===
- `import mock # to monkey-patch the relevant method of ``Legend```
import matplotlib.legend as mlegend
import matplotlib.pyplot as plt
import numpy as np
python benchmark new auto legend locator
Python matplotlib example: benchmark new auto legend locator
# -*- coding: utf-8 -*-
"""
Memo for pprofile:
pprofile --out cachegrind.out benchmark_cleverer_legend.py >> profiling.log
"""
from __future__ import division, print_function, unicode_literals
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.legend as mlegend
import mock # to monkey-patch the relevant method of ``Legend``
import pprofile # === pprofile version ===
#from line_profiler import LineProfiler # === line_profiler version ===
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
# Import what is needed in ``_auto_legend_data``
from matplotlib.lines import Line2D
from matplotlib.patches import Rectangle, Patch
#%%
# The methods that one wants to profile
def _former_auto_legend_data(self):
assert self.isaxes
ax = self.parent
bboxes = []
lines = []
offsets = []
for handle in ax.lines:
assert isinstance(handle, Line2D)
path = handle.get_path()
trans = handle.get_transform()
tpath = trans.transform_path(path)
lines.append(tpath)
for handle in ax.patches:
assert isinstance(handle, Patch)
if isinstance(handle, Rectangle):
transform = handle.get_data_transform()
bboxes.append(handle.get_bbox().transformed(transform))
else:
transform = handle.get_transform()
# The former strategy
bboxes.append(handle.get_path().get_extents(transform))
for handle in ax.collections:
transform, transOffset, hoffsets, paths = handle._prepare_points()
if len(hoffsets):
for offset in transOffset.transform(hoffsets):
offsets.append(offset)
try:
vertices = np.concatenate([l.vertices for l in lines])
except ValueError:
vertices = np.array([])
return [vertices, bboxes, lines, offsets]
def _new_auto_legend_data(self):
assert self.isaxes
ax = self.parent
bboxes = []
lines = []
offsets = []
for handle in ax.lines:
assert isinstance(handle, Line2D)
path = handle.get_path()
trans = handle.get_transform()
tpath = trans.transform_path(path)
lines.append(tpath)
for handle in ax.patches:
assert isinstance(handle, Patch)
if isinstance(handle, Rectangle):
transform = handle.get_data_transform()
bboxes.append(handle.get_bbox().transformed(transform))
else:
transform = handle.get_transform()
# The suggested new strategy
tpath = transform.transform_path(handle.get_path())
lines.append(tpath)
for handle in ax.collections:
transform, transOffset, hoffsets, paths = handle._prepare_points()
if len(hoffsets):
for offset in transOffset.transform(hoffsets):
offsets.append(offset)
try:
vertices = np.concatenate([l.vertices for l in lines])
except ValueError:
vertices = np.array([])
return [vertices, bboxes, lines, offsets]
#%%
# Helper functions for plotting
def draw_hist(data, ax=None, **kwargs):
if ax is None:
fig_label = "histogram"
plt.close(fig_label)
fig, ax = plt.subplots(num=fig_label)
_bins = np.linspace(data.min() - 0.01, data.max() + 0.01, len(data)//10)
kwargs.setdefault("bins", _bins)
ax.hist(data, **kwargs)
return ax
def draw_patches(patch_list, ax=None):
if ax is None:
fig_label = "patches"
plt.close(fig_label)
fig, ax = plt.subplots(num=fig_label)
for _p in patch_list:
ax.add_patch(_p)
return ax
def draw_collection(coll, ax=None):
if ax is None:
fig_label = "collection"
plt.close(fig_label)
fig, ax = plt.subplots(num=fig_label)
ax.add_collection(coll)
return ax
def draw_polygon(prng, N_edge_max, extent, **kwargs):
"""Return a random Polygon with at most *N_edge_max* edges,
all of them in the *extent* (xmin, xmax, ymin, ymax).
"""
xmin, xmax, ymin, ymax = extent
N_edges = prng.randint(3, N_edge_max)
x_values = (xmax - xmin)*prng.random_sample(size=(N_edges, 1)) + xmin
y_values = (ymax - ymin)*prng.random_sample(size=(N_edges, 1)) + ymin
return Polygon(np.hstack((x_values, y_values)), **kwargs)
#%%
# It's plotting time!
N_iterations = 50 # Repeat the plots several times to average the profiling
N_hist_samples = 50000
N_patches = 500 # Use a multiple of 4 if one wants this exact amount
N_edge_max = 20 # >= 3 (please)
for mth, lbl in (
(_former_auto_legend_data, "former"), (_new_auto_legend_data, "new")):
with mock.patch.object(mlegend.Legend, "_auto_legend_data", mth):
prng = np.random.RandomState(390423) # same seed in both cases
print("\n=== Benchmarking the {0} auto legend locator ===".format(lbl))
# Prepare the figure and the relevant axes
fig_label = "benchmark_of_{0}_method".format(lbl)
plt.close(fig_label)
fig, (ax0, ax1, ax2) = plt.subplots(
ncols=3, num=fig_label, figsize=(12.8, 4.8))
# Set up a profiler instance for each type of plot
# === line_profiler version ===
#lp0 = LineProfiler()
#ax0_lgd_wrapper = lp0(ax0.legend)
#lp1 = LineProfiler()
#ax1_lgd_wrapper = lp1(ax1.legend)
#lp2 = LineProfiler()
#ax2_lgd_wrapper = lp2(ax2.legend)
# === pprofile version ===
prof0 = pprofile.Profile()
prof1 = pprofile.Profile()
prof2 = pprofile.Profile()
for idx in range(N_iterations):
# Histogram with a high amount of bins
data = prng.random_sample(size=N_hist_samples)
data[data < 0.1] = 0.01
data[data > 0.9] = 0.99
ax = ax0
ax.clear()
ax = draw_hist(data, ax=ax, histtype="step", label="Data")
# Axes with a significant amount of ``Patch`` (distinct) instances
# NB: target a centered legend as it's the last possible location.
patch_list = []
_N4 = N_patches // 4
for extent in ([0.0, 1.0, 0.8, 1.0], [0.0, 0.2, 0.0, 1.0],
[0.0, 1.0, 0.0, 0.2], [0.8, 1.0, 0.0, 1.0]):
patch_list += [
draw_polygon(prng, N_edge_max, extent) for _ in range(_N4)]
ax = ax1
ax.clear()
ax = draw_patches(patch_list, ax=ax)
ax.plot([0.0, 1.0], [0.9, 0.9], color="tab:red", label="A segment")
# Axes using a ``PatchCollection`` instance instead
patch_coll = PatchCollection(patch_list, color="tab:blue")
ax = ax2
ax.clear()
ax = draw_collection(patch_coll, ax=ax)
ax.plot([0.0, 1.0], [0.9, 0.9], color="tab:red", label="A segment")
# Update the canvas with the auto legend locator
# === line_profiler version ===
#for ax_legend_wrapper in (
# ax0_lgd_wrapper, ax1_lgd_wrapper, ax2_lgd_wrapper):
# ax_legend_wrapper(loc="best")
# === pprofile version ===
for prof, ax in ((prof0, ax0), (prof1, ax1), (prof2, ax2)):
with prof():
ax.legend(loc="best")
fig.canvas.draw()
if (idx % 10) == 0:
fig.savefig(fig.get_label() + "_{:03d}.png".format(idx))
for plot_type, prof in (
("hist.", prof0), ("patch.", prof1), ("coll.", prof2)):
print("\nProfile for the '{0}' plot:".format(plot_type))
prof.print_stats()
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com