Article Outline
Python matplotlib example 'cnn model 1'
Functions in program:
def max_pooling2d(_input):
def conv2d(_input, filters):
Modules used in program:
import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
python cnn model 1
Python matplotlib example: cnn model 1
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
%matplotlib inline
image_path = './Test_Dataset_png'
image_file_paths = [os.path.join(image_path, filename)
for filename in os.listdir(image_path)]
label_path = ['./label_csv/Label.csv']
tf.reset_default_graph()
image_filename_queue = tf.train.string_input_producer(image_file_paths, shuffle=False)
label_filename_queue = tf.train.string_input_producer(label_path, shuffle=False)
image_reader = tf.WholeFileReader()
label_reader = tf.TextLineReader()
image_key, image_value = image_reader.read(image_filename_queue)
label_key, label_value = label_reader.read(label_filename_queue)
decoded_img = tf.image.decode_png(image_value)
decoded_csv = tf.decode_csv(label_value, record_defaults=[[0]])
decoded_img = tf.reshape(decoded_img, [61, 49, 1])
batch_size = 20
x, y_ = tf.train.batch(
[decoded_img, decoded_csv],
batch_size=batch_size)
x = tf.cast(x, tf.float32)
y_ = tf.cast(x, tf.float32)
def conv2d(_input, filters):
return tf.layers.conv2d(_input,
filters=filters,
kernel_size=3,
activation=tf.nn.relu,
padding="SAME")
def max_pooling2d(_input):
return tf.layers.max_pooling2d(_input,
pool_size=2,
strides=[2, 2])
conv1 = conv2d(x, 10)
print(conv1.shape)
pool1 = max_pooling2d(conv1)
print(pool1.shape)
conv2 = conv2d(pool1, 20)
print(conv2.shape)
pool2 = max_pooling2d(conv2)
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com