Article Outline
Python matplotlib example 'getprobs'
Functions in program:
def _get_probs(nobs):
def sigFigs(x, n, expthresh=5, pval=False):
Modules used in program:
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
python getprobs
Python matplotlib example: getprobs
import numpy as np
import matplotlib
from matplotlib.transforms import Transform
from matplotlib.scale import ScaleBase
from matplotlib.ticker import (
FixedLocator,
NullLocator,
Formatter,
NullFormatter,
FuncFormatter
)
import matplotlib.pyplot as plt
from scipy import stats
%matplotlib inline
def sigFigs(x, n, expthresh=5, pval=False):
'''
Formats a number into a string with the correct number of sig figs.
Input:
x (numeric) : the number you want to round
n (int) : the number of sig figs it should have
Typical Usage:
>>> print(sigFigs(1247.15, 3))
1250
>>> print(sigFigs(1247.15, 7))
1247.150
'''
# check on the number provided
if x is not None and not np.isinf(x) and not np.isnan(x):
# check on the sigFigs
if n < 1:
raise ValueError("number of sig figs must be greater than zero!")
# return a string value unaltered
#if type(x) == types.StringType:
if isinstance(x, str):
out = x
# logic to do all of the rounding
elif x != 0.0:
order = np.floor(np.log10(np.abs(x)))
if -1.0 * expthresh <= order <= expthresh:
decimal_places = int(n - 1 - order)
if decimal_places <= 0:
out = '{0:,.0f}'.format(round(x, decimal_places))
else:
fmt = '{0:,.%df}' % decimal_places
out = fmt.format(x)
else:
decimal_places = n - 1
fmt = '{0:.%de}' % decimal_places
out = fmt.format(x)
else:
out = str(round(x, n))
# with NAs and INFs, just return 'NA'
else:
out = 'NA'
return out
def _get_probs(nobs):
'''Returns the x-axis labels for a probability plot based
on the number of observations (`nobs`)
'''
order = int(np.floor(np.log10(nobs)))
base_probs = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90])
axis_probs = base_probs.copy()
for n in range(order):
if n <= 2:
lower_fringe = np.array([1, 2, 5])
upper_fringe = np.array([5, 8, 9])
else:
lower_fringe = np.array([1])
upper_fringe = np.array([9])
new_lower = lower_fringe/10**(n)
new_upper = upper_fringe/10**(n) + axis_probs.max()
axis_probs = np.hstack([new_lower, axis_probs, new_upper])
return axis_probs
class ProbTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, dist):
Transform.__init__(self)
self.dist = dist
def transform_non_affine(self, a):
return self.dist.ppf(a / 100.)
def inverted(self):
return InvertedProbTransform(self.dist)
class InvertedProbTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self):
self.dist = dist
Transform.__init__(self)
def transform_non_affine(self, a):
return self.dist.cdf(a) * 100.
def inverted(self):
return ProbTransform()
class ProbScale(ScaleBase):
"""
A standard logarithmic scale. Care is taken so non-positive
values are not plotted.
For computational efficiency (to push as much as possible to Numpy
C code in the common cases), this scale provides different
transforms depending on the base of the logarithm:
"""
name = 'prob'
def __init__(self, axis, **kwargs):
self.dist = kwargs.pop('dist', stats.norm)
self._transform = ProbTransform(self.dist)
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to specialized versions for
log scaling.
"""
axis.set_major_locator(FixedLocator(_get_probs(1e8)))
axis.set_major_formatter(FuncFormatter(ProbFormatter()))
axis.set_minor_locator(NullLocator())
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
Return a :class:`~matplotlib.transforms.Transform` instance
appropriate for the given logarithm base.
"""
return self._transform
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Limit the domain to positive values.
"""
return (vmin <= 0.0 and minpos or vmin,
vmax <= 0.0 and minpos or vmax)
class ProbFormatter(Formatter):
def __call__(self, x, pos=None):
if x < 10:
out = sigFigs(x, 1)
elif x <= 99:
out = sigFigs(x, 2)
else:
order = np.ceil(np.abs(np.log10(100 - x)))
out = sigFigs(x, order + 2)
return '{}'.format(out)
if __name__ == '__main__':
matplotlib.scale.register_scale(ProbScale)
x = np.arange(0.001, 99.999, 0.01)
y = np.random.normal(loc=2, scale=0.75, size=x.shape)
y.sort()
mydist = stats.norm
fig, ax = plt.subplots(figsize=(20, 4))
ax.plot(x, y)
ax.set_xscale('prob', dist=mydist)
t = plt.xticks(rotation=90)
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com