Article Outline
Python matplotlib example 'iris'
Modules used in program:
import matplotlib.pyplot as plt
import pandas
import sklearn
import pandas
import matplotlib
import numpy
import scipy
import sys
python iris
Python matplotlib example: iris
# coding: utf-8
# In[55]:
# Python version
import sys
print('Python: {}'.format(sys.version))
# scipy
import scipy
print('scipy: {}'.format(scipy.__version__))
# numpy
import numpy
print('numpy: {}'.format(numpy.__version__))
# matplotlib
import matplotlib
print('matplotlib: {}'.format(matplotlib.__version__))
# pandas
import pandas
print('pandas: {}'.format(pandas.__version__))
# scikit-learn
import sklearn
print('sklearn: {}'.format(sklearn.__version__))
# In[61]:
import pandas
from pandas.tools.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
# In[66]:
# Load dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = pandas.read_csv(url,names=names)
# In[67]:
print(dataset.shape)
# In[70]:
print(dataset.head(20))
# In[72]:
print(dataset.describe())
# In[76]:
print(dataset.groupby('class').size())
# In[80]:
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False , sharey=False)
plt.show()
# In[82]:
dataset.hist()
plt.show()
# In[84]:
scatter_matrix(dataset)
plt.show()
# In[118]:
from sklearn.cross_validation import train_test_split
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.2
seed = 7
X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y, test_size=validation_size, random_state=seed)
# In[101]:
# Test options and evaluation metric
seed = 7
scoring = 'accuracy'
# In[114]:
# Spot Check Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = KFold(n=10, random_state=seed)
cv_results = sklearn.cross_validation.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
# In[115]:
# Compare Algorithms
fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
# In[116]:
# Make predictions on validation dataset
knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
# In[ ]:
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com