Article Outline
Python matplotlib example 'matplotlib 3d 2-CloudScanning Cone'
Modules used in program:
import numpy as np
import matplotlib.pyplot as plt
python matplotlib 3d 2-CloudScanning Cone
Python matplotlib example: matplotlib 3d 2-CloudScanning Cone
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm,colors
import numpy as np
data_from_csv_file = np.loadtxt(open("data6.csv", "rb"), delimiter=",", skiprows=1) # 读取矩阵数据
data = data_from_csv_file[:, 5:605] # 取前600列,即3000m
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
elevations= (data_from_csv_file[:, 4] / 180) * np.pi
Rotations= data_from_csv_file[:, 3] / 180 * np.pi
r = np.arange(0, 3000, 5)
Beta, R = np.meshgrid(elevations, r)
# Then calculate X, Y, and Z
X = R * np.cos(Beta)
Y = R * np.sin(Beta)
Z= np.cos(Rotations) * R
dataT = data.T
# maxv=np.max(dataT)
#对数据进行处理,算法:归一化后乘以2,此算法可能不对。
# for i in range(dataT.shape[0]):
# for j in range(dataT.shape[1]):
# dataT[i,j]=(dataT[i,j]/maxv)*2
cdict = {'red': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.66, 1, 1),
(0.89, 1, 1),
(1, 0.5, 0.5)),
'green': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.375, 1, 1),
(0.64, 1, 1),
(0.91, 0, 0),
(1, 0, 0)),
'blue': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 1, 1),
(0.34, 1, 1),
(0.65, 0, 0),
(1, 0, 0))}
my_cmap = colors.LinearSegmentedColormap('my_colormap',cdict,256)
cmp2=my_cmap(dataT)##使用用户自定义颜色映射方案
#cmp = cm.jet(N)##使用内置颜色映射方案
# surf = ax.plot_surface(X, Y, Z, rstride=10, cstride=10, facecolors=cmp2, linewidth=0, antialiased=True)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=cmp2, linewidth=0, antialiased=True)
ax.set_xlabel("X/m")
ax.set_ylabel("Y/m")
ax.set_zlabel("Hight/m")
#图例:
m = cm.ScalarMappable(cmap=my_cmap)
m.set_array(dataT)
plt.colorbar(m)
plt.show()
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com