Article Outline
Python matplotlib example 'scatdens'
Functions in program:
def scatter_density_plot(xx, yy, xrange, yrange, mode="hist", sort=True, modepars={}, ax=None, fig=plt, **kwargs):
Modules used in program:
import matplotlib as mpl
import matplotlib.path as mpath
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sb
python scatdens
Python matplotlib example: scatdens
from scipy.interpolate import interpn
from scipy.stats import gaussian_kde
from scipy.spatial import cKDTree
import seaborn as sb
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.path as mpath
from matplotlib.colors import Normalize
from matplotlib import cm
import matplotlib as mpl
def scatter_density_plot(xx, yy, xrange, yrange, mode="hist", sort=True, modepars={}, ax=None, fig=plt, **kwargs):
grid = np.vstack([xx,yy])
ax = plt.gca() if ax is None else ax
plotargs = {}
if mode == "hist":
bins = modepars.get('bins', (15,15))
h, x_e, y_e = np.histogram2d(xx, yy, bins=bins)
stepx = x_e[1]-x_e[0]
x_e = np.pad(x_e, (1,1), 'constant', constant_values=(x_e[0]-stepx, x_e[-1]+stepx))
stepy = y_e[1]-y_e[0]
y_e = np.pad(y_e, (1,1), 'constant', constant_values=(y_e[0]-stepx, y_e[-1]+stepx))
h = np.pad(h, ((1,1), (1,1)), 'constant', constant_values=((0,0), (0,0)))
xc = (x_e[1:] + x_e[:-1])/2
yc = (y_e[1:] + y_e[:-1])/2
zz = interpn((xc, yc), h, grid.T, method = "linear")
elif mode == "kde":
kernel = gaussian_kde(grid)
zz = kernel(grid)
elif mode == "near":
scalingx = (xrange[1] - xrange[0])
scalingy = (yrange[1] - yrange[0])
xxn = (xx - xrange[0]) / scalingx
yyn = (yy - yrange[0]) / scalingy
gridn = np.vstack([xxn, yyn])
tree = cKDTree(gridn.T)
searchradius = modepars.get('searchradius', 0.03)
njobs = modepars.get('njobs', 2)
nb = tree.query_ball_point(gridn.T, searchradius, n_jobs=njobs)
zz = np.fromiter(map(len, nb), dtype=int)
circle = mpath.Path.unit_circle()
verts = np.copy(circle.vertices)
xp1, yp1, xp2, yp2 = ax.figure.bbox.bounds
ap = (xp2 - xp1) * searchradius
bp = (yp2 - yp1) * searchradius
verts[:, 0] *= ap/bp
verts[:, 1] *= 1
ell_marker = mpath.Path(verts, circle.codes)
area_p = ap*bp*np.pi
plotargs['s'] = kwargs.pop('s', area_p)
plotargs['marker'] = kwargs.pop('marker', ell_marker)
else:
raise ValueError(f"Invalid mode: {mode}")
if plotargs.get('s', None) == 'auto':
plotargs['s'] = mpl.rcParams['lines.markersize'] ** 2
if sort:
idx = np.argsort(zz)
xx = np.array(xx)[idx]
yy = np.array(yy)[idx]
zz = zz[idx]
mapping = ax.scatter(xx, yy, c=zz, **plotargs, **kwargs)
ax.set_xlim(*xrange)
ax.set_ylim(*yrange)
fig.colorbar(mapping, ax=ax, extend='max')
return ax
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com