Article Outline
Python matplotlib example 'sed'
Functions in program:
def logblack(*args):
def black(v, beta, T, logA):
def thermaldust(nu, beam, T_d, tau, beta):
def tick_function(x):
Modules used in program:
import matplotlib.dates as mdates
import datetime
import sys
import matplotlib.pyplot as plt
import scipy
import matplotlib
import numpy as np
python sed
Python matplotlib example: sed
import numpy as np
import matplotlib
import scipy
from scipy.optimize import curve_fit
#matplotlib,pgetu,emcee,astropy,warnings
#from scipy import ndimage,optimize; from scipy.optimize import fmin
import matplotlib.pyplot as plt
import sys
import datetime
import matplotlib.dates as mdates
from matplotlib.transforms import Transform
from matplotlib.ticker import (
AutoLocator, AutoMinorLocator)
plt.rcParams['mathtext.default']='regular'
"""
plot a given expression y=f(x)
x= np.linspace(1,5)
y = np.power(x,3)
plt.plot(x,y,color='blue')
plt.plot(np.log(x),np.log(y),color='green')
plt.show()
#############################
x= np.linspace(1,5)
y = np.power(x,3)
#plt.plot(x,y,color='blue')
plt.loglog(x,y,color='green')
plt.show()
"""
"""
x=[250/2.524,350/2.524,500/2.524,59958.4916/2.524]
y=[67e-3,56e-3,32e-3,15e-6]
plt.loglog(x,y,'go')
plt.xlim(10,1e5)
plt.ylim(1e-6,1)
#plt.show()
plt.savefig('hrs.png')
"""
"""
c = 3.0e14 #micro-m/s
#1+z = 2.524
x=[250/2.524,350/2.524,500/2.524,1313.53/2.524,59958.4916/2.524,54507.72/2.524] #54507.72 micro-m = 5.5 GHz = our VLA frequeny, 90 micro-Jy is the total flux density
y=[67e-3,56e-3,32e-3,21.99e-3,15e-6,90e-6] #228.234 GHz =1313.53 micro-m ; 21.99 mJy Divide by 1+z to get the rest wavelength
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twiny()
#fig, ax = plt.subplots()
ax1.loglog(x, y,'go')
plt.xlim(10,1e5)
ax1.set_xlabel('Rest Wavelength ($\mu$m)')
ax1.set_ylabel('Flux Density (Jy)')
new_tick_locations = np.array([1e2,1e3,1e4,1e5])
def tick_function(x):
V = c/(2.524*x)
return ["%.4f" % z for z in V]
ax2.set_xlim(ax1.get_xlim())
ax2.set_xticks(new_tick_locations)
ax2.set_xticklabels(tick_function(new_tick_locations))
ax2.set_xlabel(r"Modified x-axis: $1/(1+X)$")
plt.show()
"""
"""
# Thermal Dust Emission
def thermaldust(nu, beam, T_d, tau, beta):
c = 299792458.
k = 1.3806488e-23
h = 6.62606957e-34
nu = np.multiply(nu,1e9)
planck = np.exp(h*nu/k/T_d) - 1.
modify = 10**tau * (nu/353e9)**beta # set to tau_353
S = 2 * h * nu**3/c**2 /planck * modify * beam * 1e26
return S
"""
h = 6.63e-34 #m2 kg / s
k = 1.38e-23 #m2 kg s-2 K-1
c = 3.0e14 #micro-m/s
restwave=[250/2.524,350/2.524,500/2.524,1275.71/2.524 ,59958.4916/2.524,54507.72/2.524] #54507.72 micro-m = 5.5 GHz = our VLA frequeny, 90 micro-Jy is the total flux density
flux=[67e-3,56e-3,32e-3,2.19e-3,15e-6,90e-6] #228.234 GHz =1313.53 micro-m ; 21.99 mJy Divide by 1+z to get the rest wavelength
# 235 GHz = 1275.71 micro-m, flux = 2.19 mJy
def black(v, beta, T, logA):
vhkt = np.array(v) * (h/(k*T))
planck = np.exp(vhkt) - 1
vpow = np.exp( np.log(v) * (3+beta))
S = np.power(10.,logA)*np.divide(vpow, planck)
return S
p0 = [1.5,31,-56]
#p0 =[1.5, 31, -20]
#p0 = [ -3.4163290769976857, 34.90730748112709, -10.190671841431119 ]
#p0 = [ -3.44728436, 68.64392877, -10.4031822 ]
#p0 = [ -3.44728436, 68.64392877, -10.4031822 ]
# Do initial sanity check
print('Input | Output')
for inp, oup in zip(restwave, flux):
print(black(inp, *p0), ', ', oup)
# Fit with square of log loss first to get balllpark parameters
def logblack(*args):
return np.log(black(*args))
initial_params, _ = curve_fit(logblack, restwave, np.log(flux), p0=p0)
print('Initial fitted params are [', ', '.join([str(x) for x in initial_params]), ']')
# Fit with updated initial params
params, cov = curve_fit(black, restwave, flux, p0=initial_params)#, sigma=[1e-3,1e-3,1e-3,1e-3])# SIGMA parameter is optional.
#params_err = np.sqrt(np.diag(cov))
print('Final fitted params are [', ', '.join([ str(x) for x in params]), ']')
### convert rest wave to rest freq, because freq is needed in the BB equation ###
restfreq = []
restfreq= [c*(i**-1) for i in restwave]
# Plot curve
modelxrangewave = np.linspace(np.min(restwave), np.max(restwave), 1000)
modelxrangefreq = [c*(i**-1) for i in modelxrangewave]
fitted_model = black(modelxrangewave, *params)
plt.loglog(modelxrangewave,fitted_model)
# Plot data
plt.loglog(restwave, flux,'go')
# Plot predictions of fitted model
plt.loglog(restwave, black(restwave, *params),'ro')
plt.xlim(10,1e5)
#plt.ylim(1e-6,1)
plt.xlabel('Rest Wavelength ($\mu$m)')
plt.ylabel('Flux Density (Jy)')
plt.show()
#plt.savefig('updated3.png')
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com