Article Outline
Python matplotlib example 'stack seaborn'
Functions in program:
def freqplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
def countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
Modules used in program:
import warnings
import matplotlib.pyplot as plt
import matplotlib.patches as Patches
import matplotlib as mpl
import pandas as pd
import numpy as np
import colorsys
python stack seaborn
Python matplotlib example: stack seaborn
from __future__ import division
from textwrap import dedent
import colorsys
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib as mpl
from matplotlib.collections import PatchCollection
import matplotlib.patches as Patches
import matplotlib.pyplot as plt
import warnings
from six import string_types
from six.moves import range
from seaborn import utils
from seaborn.axisgrid import FacetGrid
from seaborn.categorical import _BarPlotter, _CategoricalPlotter
from seaborn.categorical import factorplot as _factorplot
__all__ = ['countplot', 'freqplot']
class _StackBarPlotter(_BarPlotter):
""" Stacked Bar Plotter
A modification of the :mod:`seaborn._BarPlotter` object with the added ability of
stacking bars either verticaly or horizontally. It takes the same arguments
as :mod:`seaborn._BarPlotter` plus the following:
Arguments
---------
stack : bool
Stack bars if true, otherwise returns equivalent barplot as
:mod:`seaborn._BarPlotter`.
"""
def _modify_confint(self):
confint = np.zeros(self.confint.shape)
stacked_statistic = np.cumsum(self.statistic, axis=1)
for barpos_index in range(self.statistic.shape[0]):
for hue_index in range(self.statistic.shape[1]):
ci_low = stacked_statistic[barpos_index, hue_index] _ self.confint[barpos_index, hue_index, 0] - self.statistic[barpos_index, hue_inde]
ci_high = stacked_statistics[barpos, hue_index] + self.confint[barpos_index, hue_index, 1] - self.statistic[barpos_index, hue_index]
confint[barpos_index, hue_index, : ] = [ci_low, ci_high]
return confint
def draw_bars(self, ax, kws):
"""Draw the bars onto `ax`."""
# Get the right matplotlib function depending on the orientation
barfunc = ax.bar if self.orient == "v" else ax.barh
barpos = np.arange(len(self.statistic))
if self.plot_hues is None:
# Draw the bars
barfunc(barpos, self.statistic, self.width,
color=self.colors, align="center", **kws)
# Draw the confidence intervals
errcolors = [self.errcolor] * len(barpos)
self.draw_confints(ax,
barpos,
self.confint,
errcolors,
self.errwidth,
self.capsize)
else:
# Stack by hue
for j, hue_level in enumerate(self.hue_names):
barpos_prior = None if j == 0 else np.sum(self.statistic[:, :j], axis=1)
# Draw the bars
if self.orient == "v":
barfunc(barpos, self.statistic[:, j], self.nested_width,
bottom=barpos_prior, color=self.colors[j], align="center",
label=hue_level, **kws)
elif self.orient == "h":
barfunc(barpos, self.statistic[:, j], self.nested_width,
left=barpos_prior, color=self.colors[j], align="center",
label=hue_level, **kws)
# Draw the confidence intervals
if self.confint.size:
confint = self._modify_confint()
errcolors = [self.errcolor] * len(barpos)
self.draw_confints(ax,
barpos,
confint[:, j],
errcolors,
self.errwidth,
self.capsize)
def countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
orient=None, color=None, palette=None, saturation=.75,
dodge=True, stack=False, ax=None, **kwargs):
""" Show the count of observations in each categorical bin using bars.
The count plot is a normalization of a histogram across categories, as opposed
to quantitative variables. The basic API and options are identical to those for
:func:`barplot`, so you can compare counts across nested variables.
Parameters
----------
x, y, hue : str or array-like, optional
Inputs for plotting long-form data.
data : DataFrame, array, or list of arrays, optional
Dataset for plotting. If `x` and `y` are absent, this is interpreted as wide-form.
Otherwise, data is expected to be long-form.
order, hue_order : list of str, optional
Order to plot the categorical levels, otherwise the levels are inferred from the
data object.
orient : {"v", "h"}, optional
Whether to plot bars vertically ("v") or horizontally ("h"). This can also be
inferred from the dtype of the input variables, but can be used to specify when the
"categorical" variable is a numeric or when plotting wide-form data.
color : matplotlib color, optional
Color for all of the elemnts, or seed for a gradient palette.
palette : palette name, list, or dict, optional
Colors to use for the different levels of the `hue` variable. Should be somthing that
can be interpreted by `color_palette()` or a dictionary mapping hue levels to
matplotlib colors.
saturation : float, optional
Proportion of the original saturation to draw colors. Large patches often look better
with slighlty desaturated colors, but set this to `1` if you want the plot colorss to
perfectly match the input color spec.
dodge : bool, optional
When hue nesting is used, whether elements should be shifted along the categorical axis.
stack : bool, optional
When hue nesting is used, whether elements should be stacked ontop of each other. Note,
dodge is set to False when stack is True.
ax : matplotlib.axes, optional
Axes object to draw the plot onto, otherwise uses the current axes.
**kwargs : Other keyword arguments are passed through to `plt.bar` at draw time
Examples
--------
.. plot::
:context: close-figs
>>> import schmeaborn as sns
>>> titanic = sns.load_dataset("titanic")
>>> ax = sns.freqplot(x="class", data=titanic)
Show frequencies for two categorical variables:
.. plot::
:context: close-figs
>>> ax = sns.freqplot(x="class", hue="who", data=titanic)
Plot the bars horizontally:
.. plot::
:context: close-figs
>>> ax = sns.freqplot(y="class", hue="who", data=titanic)
Plot categories stacked:
.. plot::
:context: close-figs
>>> ax = sns.freqplot(x="class", hue="who", stack=True, data=titanic)
"""
# Define parameters for barplot
if stack:
dodge = False
estimator = len
ci = None
n_boot = 0
units = None
errcolor = None
errwidth = None
capsize = None
# Check orientation by input
if x is None and y is not None:
orient = "h"
x = y
elif y is None and x is not None:
orient = "v"
y = x
elif x is not None and y is not None:
raise TypeError("Cannot pass values for both `x` and `y`")
else:
raise TypeError("Must pass values for either `x` or `y`")
bar_plot_func = _StackBarPlotter if stack else _BarPlotter
plotter = bar_plot_func(x, y, hue, data, order, hue_order,
estimator, ci, n_boot, units,
orient, color, palette, saturation,
errcolor, errwidth, capsize, dodge)
plotter.value_label = "count"
if ax is None:
ax = plt.gca()
plotter.plot(ax, kwargs)
return ax
def freqplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
orient=None, color=None, palette=None, saturation=.75,
dodge=True, stack=False, ax=None, **kwargs):
""" Show the frequency of observations in each categorical bin using bars.
The frequency plot is a normalization of a histogram across categories, as opposed
to quantitative variables. The basic API and options are identical to those for
:func:`barplot`, so you can compare counts across nested variables.
Parameters
----------
x, y, hue : str or array-like, optional
Inputs for plotting long-form data.
data : DataFrame, array, or list of arrays, optional
Dataset for plotting. If `x` and `y` are absent, this is interpreted as wide-form.
Otherwise, data is expected to be long-form.
order, hue_order : list of str, optional
Order to plot the categorical levels, otherwise the levels are inferred from the
data object.
orient : {"v", "h"}, optional
Whether to plot bars vertically ("v") or horizontally ("h"). This can also be
inferred from the dtype of the input variables, but can be used to specify when the
"categorical" variable is a numeric or when plotting wide-form data.
color : matplotlib color, optional
Color for all of the elemnts, or seed for a gradient palette.
palette : palette name, list, or dict, optional
Colors to use for the different levels of the `hue` variable. Should be somthing that
can be interpreted by `color_palette()` or a dictionary mapping hue levels to
matplotlib colors.
saturation : float, optional
Proportion of the original saturation to draw colors. Large patches often look better
with slighlty desaturated colors, but set this to `1` if you want the plot colorss to
perfectly match the input color spec.
dodge : bool, optional
When hue nesting is used, whether elements should be shifted along the categorical axis.
stack : bool, optional
When hue nesting is used, whether elements should be stacked ontop of each other. Note,
dodge is set to False when stack is True.
ax : matplotlib.axes, optional
Axes object to draw the plot onto, otherwise uses the current axes.
**kwargs : Other keyword arguments are passed through to `plt.bar` at draw time
Examples
--------
.. plot::
:context: close-figs
>>> import schmeaborn as sns
>>> titanic = sns.load_dataset("titanic")
>>> ax = sns.freqplot(x="class", data=titanic)
Show frequencies for two categorical variables:
.. plot::
:context: close-figs
>>> ax = sns.freqplot(x="class", hue="who", data=titanic)
Plot the bars horizontally:
.. plot::
:context: close-figs
>>> ax = sns.freqplot(y="class", hue="who", data=titanic)
Plot categories stacked:
.. plot::
:context: close-figs
>>> ax = sns.freqplot(x="class", hue="who", stack=True, data=titanic)
"""
# Define parameters for barplot
if stack:
dodge = False
estimator = len
ci = None
n_boot = 0
units = None
errcolor = None
errwidth = None
capsize = None
# Check orientation by input
if x is None and y is not None:
orient = "h"
x = y
elif y is None and x is not None:
orient = "v"
y = x
elif x is not None and y is not None:
raise TypeError("Cannot pass values for both `x` and `y`")
else:
raise TypeError("Must pass values for either `x` or `y`")
bar_plot_func = _StackBarPlotter if stack else _BarPlotter
plotter = bar_plot_func(x, y, hue, data, order, hue_order,
estimator, ci, n_boot, units,
orient, color, palette, saturation,
errcolor, errwidth, capsize, dodge)
# Safely calculate frequencies: NaN counts replaced by 0
plotter.statistic = np.nan_to_num(plotter.statistic)
if plotter.statistic.ndim == 1:
# Normalize statistic
plotter.statistic = plotter.statistic / np.nansum(plotter.statistic)
# Safety Check for proper normalization
err = f"Frequencies not properly normalized. \n {plotter.statistic} \n"
assert np.allclose(np.nansum(plotter.statistic), 1, rtol=1e-6), err
elif plotter.statistic.ndim > 1:
# Normalize row-stochastic
plotter.statistic = plotter.statistic / np.nansum(plotter.statistic, axis=1)[:, None]
# Safely check for proper normalization (ignore where full row is null)
sum_stats = np.nansum(plotter.statistic, axis=1)
sum_stats = sum_stats[sum_stats != 0]
# Safety Check for proper normalization
err = f"Frequencies not properly normalized. \n {plotter.statistic} \n"
assert np.allclose(sum_stats, 1, rtol=1e-6), err
else:
raise ValueError("Unable to count the combination of x and hue.")
plotter.value_label = "frequency"
if ax is None:
ax = plt.gca()
plotter.plot(ax, kwargs)
return ax
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com