Article Outline
Python matplotlib example 'super'
Functions in program:
def GenSigmaChart(data, output, type, std):
def GenHistogram(data, output, type, unit, title):
Modules used in program:
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
import sys
python super
Python matplotlib example: super
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import sys
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
if len(sys.argv) < 4:
print("Usage: generate.py data.txt type output")
exit(1)
def GenHistogram(data, output, type, unit, title):
width = 20 # cm
height = 15 # cm
num_bins = min(max(len(data) / 3, 2), 12)
avg = np.average(data)
std = np.std(data)
fig, ax = plt.subplots()
n, bins, patches = ax.hist(data, num_bins, color='burlywood', histtype='stepfilled')
ax.axvline(avg, color='red', label="Média = %.2f %s" % (avg, unit))
ax.axvline(avg-std, color='lightblue', label="Média - Desvio Padrão = %.2f %s" %(avg-std, unit))
ax.axvline(avg+std, color='darkblue', label="Média + Desvio Padrão = %.2f %s" % (avg+std, unit))
plt.text(0.025, 0.8, r'$\sigma = %.2f$' % std, transform = ax.transAxes)
ax.set_xlabel('%s (%s)' %(type, unit))
ax.set_ylabel('Contagem (n)')
ax.set_title('%s' %title)
ax.set_ylim( None, n.max() * 1.2)
legend = ax.legend(loc='upper left', shadow=True, prop={'size':10})
fig.tight_layout()
fig.set_size_inches(width / 2.54, height / 2.54)
plt.savefig('%s.png' %output, dpi=100)
def GenSigmaChart(data, output, type, std):
#Tstd, "%s-sigma" %(output), 'Tempo de Queda'
width = 20 # cm
height = 15 # cm
x = [2**i for i in range(len(data))]
s = std / np.sqrt(x)
fig, ax = plt.subplots()
ax.plot(x, data, label="Calculado")
ax.plot(x, s, label="Teórico")
ax.set_xlabel('Número de Amostras usadas na média')
ax.set_ylabel('Desvio Padrão')
ax.set_title('Desvio Padrão da Média de %s' %type)
legend = ax.legend(loc='upper right', shadow=True, prop={'size':10})
fig.tight_layout()
fig.set_size_inches(width / 2.54, height / 2.54)
plt.savefig('%s.png' %output, dpi=100)
deltaS = 34 # metros
type = sys.argv[2].decode(encoding='UTF-8',errors='strict')
output = sys.argv[3]
data = np.fromfile(sys.argv[1], sep='\n')
dataV = deltaS / data
dataA = (2 * deltaS) / (data ** 2)
Tstd = []
Vstd = []
Astd = []
Tavg = []
Vavg = []
Aavg = []
for i in range(0,6):
n = 2**i
arrT = []
arrV = []
arrA = []
print("Calculando para %s" %n)
filenameT = "o/%s-%s-t.txt" %(output, n)
filenameV = "o/%s-%s-v.txt" %(output, n)
filenameA = "o/%s-%s-a.txt" %(output, n)
print("Salvando em %s %s %s" % (filenameT, filenameV, filenameA))
fT = open(filenameT, "w")
fV = open(filenameV, "w")
fA = open(filenameA, "w")
for z in range(0, len(data), n):
avgT = 0
avgV = 0
avgA = 0
if z+n >= len(data):
break;
for k in range(0, n):
avgT += data[z+k]
avgV += dataV[z+k]
avgA += dataA[z+k]
avgT /= n
avgV /= n
avgA /= n
arrT.append(avgT)
arrV.append(avgV)
arrA.append(avgA)
fT.write("%.2f\n" %avgT)
fV.write("%.2f\n" %avgV)
fA.write("%.2f\n" %avgA)
fT.close()
fV.close()
fA.close()
npT = np.array(arrT)
npV = np.array(arrV)
npA = np.array(arrA)
Tstd.append(np.std(npT))
Vstd.append(np.std(npV))
Astd.append(np.std(npA))
print("Salvando Gráfico de Histograma do Tempo de Queda")
GenHistogram(npT, "%s-%s-hist" %(output, n), 'Tempo de Queda', 's', 'Histograma de Tempo de Queda Média N=%s (%s)' %(n, type))
Tavg.append(np.average(npT))
Vavg.append(np.average(npV))
Aavg.append(np.average(npA))
print("Desenhando gráfico sigma")
GenSigmaChart(Tstd, "%s-sigma" %(output), 'Tempo de Queda (%s)' %type, np.std(data))
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com