Article Outline
Python pil example 'Pycharm project Train VerificationCode CNN'
Functions in program:
def train_crack_captcha_cnn():
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
def GenerateNextBatch(batchSize=128):
def Vector2Text(vector):
def Text2Vector(text):
def Convert2gray(image):
def GetImageWH(image):
Modules used in program:
import Definitions
import tensorflow as tf
import numpy as np
python Pycharm project Train VerificationCode CNN
Python pil example: Pycharm project Train VerificationCode CNN
import numpy as np
import tensorflow as tf
import Definitions
from CaptchaImage import GetCaptchaTextAndImage
# from PIL import Image
# from matplotlib.pyplot import imshow
def GetImageWH(image):
# import numpy as np
if isinstance(image, str):
from PIL import Image
image = Image.open(image)
img_np = np.array(image)
return img_np.shape[1], img_np.shape[0]
# 灰階化
def Convert2gray(image):
if len(image.shape) > 2:
gray = np.mean(image, -1)
return gray
else:
return image
# Standardlize Text To Vector
def Text2Vector(text):
# import ipynb.fs.full.Definitions
text_len = len(text)
if text_len > Definitions.MAX_CAPTCHA:
raise ValueError('MAX_CAPTCHA out of length')
vector = np.zeros(Definitions.MAX_CAPTCHA * Definitions.CHAR_SET_LEN)
def GetCharIndex(char):
return Definitions.charSet.index(char)
for index, char in enumerate(text):
idx = index * Definitions.CHAR_SET_LEN + GetCharIndex(char)
vector[idx] = 1
return vector
# vec = Text2Vector('hC2a')
# print(vec.nonzero()[0])
def Vector2Text(vector):
text = []
charPositions = vector.nonzero()[0]
for index, charPos in enumerate(charPositions):
charIndex = charPos - index * Definitions.CHAR_SET_LEN
text.append(Definitions.charSet[charIndex])
return text
def GenerateNextBatch(batchSize=128):
import numpy as np
batch_x = np.zeros([batchSize, Definitions.IMAGE_HEIGHT * Definitions.IMAGE_WIDTH])
batch_y = np.zeros([batchSize, Definitions.MAX_CAPTCHA * Definitions.CHAR_SET_LEN])
# Make sure image is 160(W) * 60(H) * 3(RGB) format
def GetWrappedCaptchaTextAndImage():
# from ipynb.fs.full.Create_Image import GetCaptchaTextAndImage
while True:
text, image = GetCaptchaTextAndImage()
if image.shape == (60, 160, 3): # 此部分应该与开头部分图片宽高吻合
return text, image
for i in range(batchSize):
text, image = GetWrappedCaptchaTextAndImage()
image = Convert2gray(image)
# 将图片数组一维化 同时将文本也对应在两个二维组的同一行
batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0
batch_y[i, :] = Text2Vector(text)
# 返回该训练批次
return batch_x, batch_y
X = tf.placeholder(tf.float32, [None, Definitions.IMAGE_HEIGHT * Definitions.IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, Definitions.MAX_CAPTCHA * Definitions.CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32) # dropout
# Define CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
# 将占位符 转换为 按照图片给的新样式
x = tf.reshape(X, shape=[-1, Definitions.IMAGE_HEIGHT, Definitions.IMAGE_WIDTH, 1])
#w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
#w_c2_alpha = np.sqrt(2.0/(3*3*32))
#w_c3_alpha = np.sqrt(2.0/(3*3*64))
#w_d1_alpha = np.sqrt(2.0/(8*32*64))
#out_alpha = np.sqrt(2.0/1024)
# 3 conv layer
w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32])) # 从正太分布输出随机值
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)
w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))
b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
# Fully connected layer
w_d = tf.Variable(w_alpha*tf.random_normal([8*20*64, 1024]))
b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha*tf.random_normal([1024, Definitions.MAX_CAPTCHA * Definitions.CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha*tf.random_normal([Definitions.MAX_CAPTCHA * Definitions.CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
#out = tf.nn.softmax(out)
return out
def train_crack_captcha_cnn():
output = crack_captcha_cnn()
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
# 最后一层用来分类的softmax和sigmoid有什么不同?
# optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
predict = tf.reshape(output, [-1, Definitions.MAX_CAPTCHA, Definitions.CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, Definitions.MAX_CAPTCHA, Definitions.CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = GenerateNextBatch(64)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
print(step, loss_)
# 每100 step计算一次准确率
if step % 100 == 0:
batch_x_test, batch_y_test = GenerateNextBatch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
print(step, acc)
# 如果准确率大于50%,保存模型,完成训练
if acc > 0.9:
saver.save(sess, "crack_capcha.model", global_step=step)
break
step += 1
train_crack_captcha_cnn()
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com