HOME/Articles/

pil example cc (snippet)

Article Outline

Python pil example 'cc'

Functions in program:

  • def standard_deviation_weighted_grey_world(nimg,subwidth,subheight):
  • def retinex_with_adjust(nimg):
  • def retinex_adjust(nimg):
  • def retinex(nimg):
  • def stretch(nimg):
  • def max_white(nimg):
  • def grey_world(nimg):
  • def stretch_pre(nimg):
  • def to_pil(nimg):
  • def from_pil(pimg):

Modules used in program:

  • import sys
  • import Image
  • import numpy as np

python cc

Python pil example: cc

# -*- coding: utf-8 -*-
import numpy as np
import Image
import sys

def from_pil(pimg):
    pimg = pimg.convert(mode='RGB')
    nimg = np.asarray(pimg)
    nimg.flags.writeable = True
    return nimg

def to_pil(nimg):
    return Image.fromarray(np.uint8(nimg))

def stretch_pre(nimg):
    """
    from 'Applicability Of White-Balancing Algorithms to Restoring Faded Colour Slides: An Empirical Evaluation'
    """
    nimg = nimg.transpose(2, 0, 1)
    nimg[0] = np.maximum(nimg[0]-nimg[0].min(),0)
    nimg[1] = np.maximum(nimg[1]-nimg[1].min(),0)
    nimg[2] = np.maximum(nimg[2]-nimg[2].min(),0)
    return nimg.transpose(1, 2, 0)

def grey_world(nimg):
    nimg = nimg.transpose(2, 0, 1).astype(np.uint32)
    mu_g = np.average(nimg[1])
    nimg[0] = np.minimum(nimg[0]*(mu_g/np.average(nimg[0])),255)
    nimg[2] = np.minimum(nimg[2]*(mu_g/np.average(nimg[2])),255)
    return  nimg.transpose(1, 2, 0).astype(np.uint8)

def max_white(nimg):
    if nimg.dtype==np.uint8:
        brightest=float(2**8)
    elif nimg.dtype==np.uint16:
        brightest=float(2**16)
    elif nimg.dtype==np.uint32:
        brightest=float(2**32)
    else:
        brightest==float(2**8)
    nimg = nimg.transpose(2, 0, 1)
    nimg = nimg.astype(np.int32)
    nimg[0] = np.minimum(nimg[0] * (brightest/float(nimg[0].max())),255)
    nimg[1] = np.minimum(nimg[1] * (brightest/float(nimg[1].max())),255)
    nimg[2] = np.minimum(nimg[2] * (brightest/float(nimg[2].max())),255)
    return nimg.transpose(1, 2, 0).astype(np.uint8)

def stretch(nimg):
    return max_white(stretch_pre(nimg))

def retinex(nimg):
    nimg = nimg.transpose(2, 0, 1).astype(np.uint32)
    mu_g = nimg[1].max()
    nimg[0] = np.minimum(nimg[0]*(mu_g/float(nimg[0].max())),255)
    nimg[2] = np.minimum(nimg[2]*(mu_g/float(nimg[2].max())),255)
    return nimg.transpose(1, 2, 0).astype(np.uint8)

def retinex_adjust(nimg):
    """
    from 'Combining Gray World and Retinex Theory for Automatic White Balance in Digital Photography'
    """
    nimg = nimg.transpose(2, 0, 1).astype(np.uint32)
    sum_r = np.sum(nimg[0])
    sum_r2 = np.sum(nimg[0]**2)
    max_r = nimg[0].max()
    max_r2 = max_r**2
    sum_g = np.sum(nimg[1])
    max_g = nimg[1].max()
    coefficient = np.linalg.solve(np.array([[sum_r2,sum_r],[max_r2,max_r]]),
                                  np.array([sum_g,max_g]))
    nimg[0] = np.minimum((nimg[0]**2)*coefficient[0] + nimg[0]*coefficient[1],255)
    sum_b = np.sum(nimg[1])
    sum_b2 = np.sum(nimg[1]**2)
    max_b = nimg[1].max()
    max_b2 = max_r**2
    coefficient = np.linalg.solve(np.array([[sum_b2,sum_b],[max_b2,max_b]]),
                                             np.array([sum_g,max_g]))
    nimg[1] = np.minimum((nimg[1]**2)*coefficient[0] + nimg[1]*coefficient[1],255)
    return nimg.transpose(1, 2, 0).astype(np.uint8)

def retinex_with_adjust(nimg):
    return retinex_adjust(retinex(nimg))

def standard_deviation_weighted_grey_world(nimg,subwidth,subheight):
    """
    This function does not work correctly
    """
    nimg = nimg.astype(np.uint32)
    height, width,ch = nimg.shape
    strides = nimg.itemsize*np.array([width*subheight,subwidth,width,3,1])
    shape = (height/subheight, width/subwidth, subheight, subwidth,3)
    blocks = np.lib.stride_tricks.as_strided(nimg, shape=shape, strides=strides)
    y,x = blocks.shape[:2]
    std_r = np.zeros([y,x],dtype=np.float16)
    std_g = np.zeros([y,x],dtype=np.float16)
    std_b = np.zeros([y,x],dtype=np.float16)
    std_r_sum = 0.0
    std_g_sum = 0.0
    std_b_sum = 0.0
    for i in xrange(y):
        for j in xrange(x):
            subblock = blocks[i,j]
            subb = subblock.transpose(2, 0, 1)
            std_r[i,j]=np.std(subb[0])
            std_g[i,j]=np.std(subb[1])
            std_b[i,j]=np.std(subb[2])
            std_r_sum += std_r[i,j]
            std_g_sum += std_g[i,j]
            std_b_sum += std_b[i,j]
    sdwa_r = 0.0
    sdwa_g = 0.0
    sdwa_b = 0.0
    for i in xrange(y):
        for j in xrange(x):
            subblock = blocks[i,j]
            subb = subblock.transpose(2, 0, 1)
            mean_r=np.mean(subb[0])
            mean_g=np.mean(subb[1])
            mean_b=np.mean(subb[2])
            sdwa_r += (std_r[i,j]/std_r_sum)*mean_r
            sdwa_g += (std_g[i,j]/std_g_sum)*mean_g
            sdwa_b += (std_b[i,j]/std_b_sum)*mean_b
    sdwa_avg = (sdwa_r+sdwa_g+sdwa_b)/3
    gain_r = sdwa_avg/sdwa_r
    gain_g = sdwa_avg/sdwa_g
    gain_b = sdwa_avg/sdwa_b
    nimg = nimg.transpose(2, 0, 1)
    nimg[0] = np.minimum(nimg[0]*gain_r,255)
    nimg[1] = np.minimum(nimg[1]*gain_g,255)
    nimg[2] = np.minimum(nimg[2]*gain_b,255)
    return nimg.transpose(1, 2, 0).astype(np.uint8)

if __name__=="__main__":
    img = Image.open(sys.argv[1])
    img.show()
    to_pil(stretch(from_pil(img))).show()
    to_pil(grey_world(from_pil(img))).show()
    to_pil(retinex(from_pil(img))).show()
    to_pil(max_white(from_pil(img))).show()
    to_pil(retinex_adjust(retinex(from_pil(img)))).show()
    to_pil(standard_deviation_weighted_grey_world(from_pil(img),50,50)).show()