Article Outline
Python pil example 'faces'
Functions in program:
def get_images_and_labels(path):
Modules used in program:
import time
import numpy as np
import cv2, os
python faces
Python pil example: faces
#!/usr/bin/python
# Import the required modules
import cv2, os
import numpy as np
from PIL import Image
import time
# For face detection we will use the Haar Cascade provided by OpenCV.
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
# For face recognition we will the the LBPH Face Recognizer
recognizer = cv2.createLBPHFaceRecognizer()
def get_images_and_labels(path):
# Append all the absolute image paths in a list image_paths
# We will not read the image with the .sad extension in the training set
# Rather, we will use them to test our accuracy of the training
image_paths = [os.path.join(path, f) for f in os.listdir(path) ]
# images will contains face images
images = []
# labels will contains the label that is assigned to the image
labels = []
print(image_paths)
for image_path in image_paths:
# Read the image and convert to grayscale
image_pil = Image.open(image_path).convert('L')
# Convert the image format into numpy array
image = np.array(image_pil, 'uint8')
cv2.imshow("Adding faces to traning set...", image)
# Get the label of the image
nbr = int(os.path.split(image_path)[1].split(".")[0].replace("subject", ""))
# Detect the face in the image
faces = faceCascade.detectMultiScale(image,
scaleFactor=1.2,
minNeighbors=4,
minSize=(90, 90),
flags=cv2.CASCADE_SCALE_IMAGE
)
# If face is detected, append the face to images and the label to labels
for (x, y, w, h) in faces:
images.append(image[y: y + h, x: x + w])
labels.append(nbr)
cv2.imshow("Adding faces to traning set...", image[y: y + h, x: x + w])
# cv2.imwrite("face-" + str(x) + ".jpg", image[y: y + h, x: x + w])
# cv2.waitKey(1000)
# return the images list and labels list
return images, labels
# Path to the Yale Dataset
path = './yalefaces'
path2 = './mias'
# Call the get_images_and_labels function and get the face images and the
# corresponding labels
images, labels = get_images_and_labels(path)
cv2.destroyAllWindows()
# Perform the tranining
recognizer.train(images, np.array(labels))
# Append the images with the extension .sad into image_paths
image_paths = [os.path.join(path2, f) for f in os.listdir(path2)]
for image_path in image_paths:
# cap = cv2.VideoCapture(0)
# while(True):
# ret, img = cap.read()
image = cv2.imread(image_path)
# print(image_path)
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# cv2.imshow("Recognizing Face", img)
# faces = faceCascade.detectMultiScale(
# image_gray,
# scaleFactor=1.3,
# minNeighbors=5,
# minSize=(30, 30),
# flags = cv2.cv.CV_HAAR_SCALE_IMAGE
# )
image = np.array(image, 'uint8')
cv2.imshow("NO FACE", image)
faces = faceCascade.detectMultiScale(image,
scaleFactor=1.2,
minNeighbors=4,
minSize=(90, 90),
flags=cv2.CASCADE_SCALE_IMAGE
)
print("FACES>>>>", len(faces))
if len(faces)>0:
# predict_image_pil = img.convert('L')
predict_image_pil = Image.fromarray(image_gray)
predict_image = np.array(predict_image_pil, 'uint8')
for (x, y, w, h) in faces:
nbr_predicted, conf = recognizer.predict(predict_image[y: y + h, x: x + w])
print(image_path, nbr_predicted, conf)
# cv2.imshow(str(image_path), predict_image[y: y + h, x: x + w])
if conf < 100:
cv2.imshow(str(nbr_predicted), predict_image[y: y + h, x: x + w])
# nbr_actual = int(os.path.split(image_path)[1].split(".")[0].replace("subject", ""))
# if nbr_actual == nbr_predicted:
# print("{} is Correctly Recognized with confidence {}".format(nbr_actual, conf))
# else:
# print("{} is Incorrect Recognized as {}".format(nbr_actual, nbr_predicted))
# cv2.imshow("Recognizing Face {}".format(x), predict_image[y: y + h, x: x + w])
cv2.waitKey(1000)
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com