HOME/Articles/

pil example labelme2voc-parallel (snippet)

Article Outline

Python pil example 'labelme2voc-parallel'

Functions in program:

  • def main():

Modules used in program:

  • import labelme
  • import PIL.Image
  • import numpy as np
  • import os.path as osp
  • import os
  • import json
  • import glob
  • import argparse

python labelme2voc-parallel

Python pil example: labelme2voc-parallel

#!/usr/bin/env python

from __future__ import print_function
from multiprocessing.dummy import Pool as ThreadPool

import argparse
import glob
import json
import os
import os.path as osp

import numpy as np
import PIL.Image

import labelme


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('labels_file')
    parser.add_argument('in_dir', help='input dir with annotated files')
    parser.add_argument('out_dir', help='output dataset directory')
    args = parser.parse_args()

    if osp.exists(args.out_dir):
        print('Output directory already exists:', args.out_dir)
        quit(1)
    os.makedirs(args.out_dir)
    os.makedirs(osp.join(args.out_dir, 'JPEGImages'))
    os.makedirs(osp.join(args.out_dir, 'SegmentationClass'))
    os.makedirs(osp.join(args.out_dir, 'SegmentationClassPNG'))
    os.makedirs(osp.join(args.out_dir, 'SegmentationClassVisualization'))
    print('Creating dataset:', args.out_dir)

    class_names = []
    class_name_to_id = {}
    for i, line in enumerate(open(args.labels_file).readlines()):
        class_id = i - 1  # starts with -1
        class_name = line.strip()
        class_name_to_id[class_name] = class_id
        if class_id == -1:
            assert class_name == '__ignore__'
            continue
        elif class_id == 0:
            assert class_name == '_background_'
        class_names.append(class_name)
    class_names = tuple(class_names)
    print('class_names:', class_names)
    out_class_names_file = osp.join(args.out_dir, 'class_names.txt')
    with open(out_class_names_file, 'w') as f:
        f.writelines('\n'.join(class_names))
    print('Saved class_names:', out_class_names_file)

    colormap = labelme.utils.label_colormap(255)

    items = glob.glob(osp.join(args.in_dir, '*.json'))

    def generate_voc_like_dataset(label_file):
        print('Generating dataset from:', label_file)
        with open(label_file) as f:
            base = osp.splitext(osp.basename(label_file))[0]
            out_img_file = osp.join(
                args.out_dir, 'JPEGImages', base + '.jpg')
            out_lbl_file = osp.join(
                args.out_dir, 'SegmentationClass', base + '.npy')
            out_png_file = osp.join(
                args.out_dir, 'SegmentationClassPNG', base + '.png')
            out_viz_file = osp.join(
                args.out_dir, 'SegmentationClassVisualization', base + '.jpg')

            data = json.load(f)

            img_file = osp.join(osp.dirname(label_file), data['imagePath'])
            img = np.asarray(PIL.Image.open(img_file))
            PIL.Image.fromarray(img).save(out_img_file)

            lbl = labelme.utils.shapes_to_label(
                img_shape=img.shape,
                shapes=data['shapes'],
                label_name_to_value=class_name_to_id,
            )
            labelme.utils.lblsave(out_png_file, lbl)

    items = glob.glob(osp.join(args.in_dir, '*.json'))
    pool = ThreadPool(16)
    pool.map(generate_voc_like_dataset, items)
    pool.close()
    pool.join()


if __name__ == '__main__':
    main()