Article Outline
Python pil example 'lesson2-webapp-plants'
Functions in program:
def redirect_to_homepage(request):
def form(request):
def predict_image_from_bytes(bytes):
def encode(img):
Modules used in program:
import base64
import os
import aiohttp
import uvicorn
import torch
python lesson2-webapp-plants
Python pil example: lesson2-webapp-plants
# This webapp is based on Healthy or Not (https://github.com/nikhilno1/healthy-or-not) -> Thanks!
from starlette.applications import Starlette
from starlette.responses import JSONResponse, HTMLResponse, RedirectResponse
from fastai import *
from fastai.vision import *
import torch
from io import BytesIO
import uvicorn
import aiohttp
import os
import base64
from PIL import Image as PILImage
async def get_bytes(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.read()
def encode(img):
img = (image2np(img.data) * 255).astype('uint8')
pil_img = PILImage.fromarray(img)
buff = BytesIO()
pil_img.save(buff, format="JPEG")
return base64.b64encode(buff.getvalue()).decode("utf-8")
#create data object from csv file with only one image per class (easy workaround to get all classes right)
data_path = 'data/ImageCLEF2011/'
images_clef2013_pd_sheet_one_class = pd.read_csv(data_path + 'images_clef2013_pd_one_class.csv')
data_placeholder = ImageDataBunch.from_df(data_path, images_clef2013_pd_sheet_one_class, fn_col=2, label_col=0, ds_tfms=get_transforms(), size=224)
#initalize pretrained fastai model
learner = create_cnn(data_placeholder, models.resnet34)
learner.load('leaf_types_stage_1')
#run inference on CPU, not GPU
defaults.device = torch.device('cpu')
#initialize app
app = Starlette()
@app.route("/upload", methods=["POST"])
async def upload(request):
data = await request.form()
bytes = await (data["file"].read())
return predict_image_from_bytes(bytes)
@app.route("/classify-url", methods=["GET"])
async def classify_url(request):
bytes = await get_bytes(request.query_params["url"])
return predict_image_from_bytes(bytes)
def predict_image_from_bytes(bytes):
img = open_image(BytesIO(bytes))
pred_class,pred_idx,outputs = learner.predict(img)
confidence = outputs[pred_idx].item()
img_data = encode(img)
return HTMLResponse(
"""
<html>
<body>
<p>Prediction: <b>%s</b></p>
<p>Confidence: %s</p>
</body>
<figure class="figure">
<img src="data:image/png;base64, %s" class="figure-img img-thumbnail input-image">
</figure>
</html>
""" %(pred_class.upper(), confidence, img_data))
@app.route("/")
def form(request):
return HTMLResponse(
"""
<h1>Which plant leaf is this??</h1>
<p>Find out to what plant this leaf belongs to (based on https://www.imageclef.org/2013/plant)</p><br>
<p>Upload image or specify URL.</p><br>
<form action="/upload" method="post" enctype="multipart/form-data">
<u>Select image to upload:</u><br><p>
1. <input type="file" name="file"><br><p>
2. <input type="submit" value="Upload and analyze image">
</form>
<br>
<strong>OR</strong><br><p>
<u>Submit a URL:</u>
<form action="/classify-url" method="get">
1. <input type="url" name="url" size="60"><br><p>
2. <input type="submit" value="Fetch and analyze image">
</form>
""")
@app.route("/form")
def redirect_to_homepage(request):
return RedirectResponse("/")
port = int(os.environ.get("PORT", 8008))
uvicorn.run(app, host="0.0.0.0", port=port)
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com