Article Outline
Python pil example 'main model'
Functions in program:
def getImagesAndLabels(path):
Modules used in program:
import numpy as np
import cv2,os
python main model
Python pil example: main model
import cv2,os
import numpy as np
from PIL import Image
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector= cv2.CascadeClassifier("haarcascade_frontalface_default.xml");
print('training initiated')
def getImagesAndLabels(path):
#get the path of all the files in the folder
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
#create empth face list
faceSamples=[]
#create empty ID list
Ids=[]
#now looping through all the image paths and loading the Ids and the images
for imagePath in imagePaths:
#loading the image and converting it to gray scale
pilImage=Image.open(imagePath).convert('L')
#Now we are converting the PIL image into numpy array
imageNp=np.array(pilImage,'uint8')
#getting the Id from the image
Id=int(os.path.split(imagePath)[-1].split(".")[1])
# extract the face from the training image sample
faces=detector.detectMultiScale(imageNp)
#If a face is there then append that in the list as well as Id of it
for (x,y,w,h) in faces:
faceSamples.append(imageNp[y:y+h,x:x+w])
Ids.append(Id)
return faceSamples,Ids
faces,Ids = getImagesAndLabels('dataSet/')
recognizer.train(faces, np.array(Ids))
recognizer.save('training/Recogniser.yml')
print('training complete')
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com