Article Outline
Python pil example 'preprocess crop'
Functions in program:
def load_and_crop_img(path, grayscale=False, color_mode='rgb', target_size=None,
Modules used in program:
import keras_preprocessing.image
import random
python preprocess crop
Python pil example: preprocess crop
import random
import keras_preprocessing.image
def load_and_crop_img(path, grayscale=False, color_mode='rgb', target_size=None,
interpolation='nearest'):
"""Wraps keras_preprocessing.image.utils.loag_img() and adds cropping.
Cropping method enumarated in interpolation
# Arguments
path: Path to image file.
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
The desired image format.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation and crop methods used to resample and crop the image
if the target size is different from that of the loaded image.
Methods are delimited by ":" where first part is interpolation and second is crop
e.g. "lanczos:random".
Supported interpolation methods are "nearest", "bilinear", "bicubic", "lanczos",
"box", "hamming" By default, "nearest" is used.
Supported crop methods are "none", "center", "random".
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
# Decode interpolation string. Allowed Crop methods: none, center, random
interpolation, crop = interpolation.split(":") if ":" in interpolation else (interpolation, "none")
if crop == "none":
return keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=target_size,
interpolation=interpolation)
# Load original size image using Keras
img = keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=None,
interpolation=interpolation)
# Crop fraction of total image
crop_fraction = 0.875
target_width = target_size[1]
target_height = target_size[0]
if target_size is not None:
if img.size != (target_width, target_height):
if crop not in ["center", "random"]:
raise ValueError('Invalid crop method {} specified.', crop)
if interpolation not in keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS:
raise ValueError(
'Invalid interpolation method {} specified. Supported '
'methods are {}'.format(interpolation,
", ".join(keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS.keys())))
resample = keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS[interpolation]
width, height = img.size
# Resize keeping aspect ratio
# result shold be no smaller than the targer size, include crop fraction overhead
target_size_before_crop = (target_width/crop_fraction, target_height/crop_fraction)
ratio = max(target_size_before_crop[0] / width, target_size_before_crop[1] / height)
target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio)
img = img.resize(target_size_before_crop_keep_ratio, resample=resample)
width, height = img.size
if crop == "center":
left_corner = int(round(width/2)) - int(round(target_width/2))
top_corner = int(round(height/2)) - int(round(target_height/2))
return img.crop((left_corner, top_corner, left_corner + target_width, top_corner + target_height))
elif crop == "random":
left_shift = random.randint(0, int((width - target_width)))
down_shift = random.randint(0, int((height - target_height)))
return img.crop((left_shift, down_shift, target_width + left_shift, target_height + down_shift))
return img
# Monkey patch
keras_preprocessing.image.iterator.load_img = load_and_crop_img
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com