Article Outline
Python pil example 'videoify911'
Functions in program:
def restartmetm():
def resizeme(img, x, y):
def zoom_at(img, x, y, zoom):
def shift_hue(arr,hout):
def savearray(a, filename, fmt='png'):
def hsv_to_rgb(hsv):
def rgb_to_hsv(rgb):
Modules used in program:
import sys
import cv2
import caffe
import math
import PIL.Image
import os
import scipy.ndimage as nd
import multiprocessing
import numpy as np
python videoify911
Python pil example: videoify911
# imports and basic notebook setup
from cStringIO import StringIO
import numpy as np
import multiprocessing
import scipy.ndimage as nd
import os
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format
import math
import caffe
import cv2
import sys
invertdirboi = False
loadmodel = True
loadrule = False
model_path = 'placez/googlenet/'
defimage69='lqsantoz.jpg'
fldr='carzcarz911'
myconv69='@bottomup 1048 40'
stepSize='@up 0.0096 168 2.6'
invertStepSize=False
iterN=3
octaveN=2
def rgb_to_hsv(rgb):
rgb = rgb.astype('float')
hsv = np.zeros_like(rgb)
hsv[..., 3:] = rgb[..., 3:]
r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2]
maxc = np.max(rgb[..., :3], axis=-1)
minc = np.min(rgb[..., :3], axis=-1)
hsv[..., 2] = maxc
mask = maxc != minc
hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask]
rc = np.zeros_like(r)
gc = np.zeros_like(g)
bc = np.zeros_like(b)
rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask]
gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask]
bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask]
hsv[..., 0] = np.select(
[r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc)
hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0
return hsv
def hsv_to_rgb(hsv):
rgb = np.empty_like(hsv)
rgb[..., 3:] = hsv[..., 3:]
h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2]
i = (h * 6.0).astype('uint8')
f = (h * 6.0) - i
p = v * (1.0 - s)
q = v * (1.0 - s * f)
t = v * (1.0 - s * (1.0 - f))
i = i % 6
conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5]
rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v)
rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t)
rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p)
return rgb.astype('uint8')
def savearray(a, filename, fmt='png'):
a = np.uint8(np.clip(a, 0, 255))
with open(filename, 'wb') as f:
PIL.Image.fromarray(a).save(f, fmt)
if loadmodel:
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'model.caffemodel'
# Patching model to be able to compute gradients.
# Note that you can also manually add "force_backward: true" line to "deploy.prototxt".
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
def setnettm():
global net
net = caffe.Classifier('tmp.prototxt', param_fn,
mean = np.float32([109.4, 118.7, 106.0]), # ImageNet mean, training set dependent
channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB
open('tmp.prototxt', 'w').write(str(model))
setnettm()
allnamez = [nametm for nametm in net._layer_names]
convallnamez = []
mahnamez = []
if invertdirboi:
if end911[0] == "bottomup":
end911[0] = "topdown"
else:
end911[0] = "bottomup"
#print(end911[0])
for ilayer in xrange(len(net.layers)):
if net.layers[ilayer].type == "Convolution":
mahnamez.append(net.layers[ilayer])
convallnamez.append(allnamez[ilayer])
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
def objective_L2(destination):
destination.diff[:] = destination.data
def make_step(net, end, objectiveGuide, step_size, jitter=128, clip=True):
'''Basic gradient ascent step.'''
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
if invertStepSize:
step_size=-step_size
ox, oy = np.random.randint(-jitter, jitter+1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift
net.forward(end=end)
objectiveGuide(dst)
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
# print(g)
src.data[:] += step_size/np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream(net, base_img, frame_i2, frame_i69, end, objectiveGuide, iter_n, octave_n, octave_scale=0.98, clip=True, **step_params):
global invertdirboi
global stepSize
# prepare base images for all octaves
if end.startswith("@"):
if not end.endswith(" "):
end=end+" "
end69=end[1:len(end)-1]
end911=end69.split(" ")
if end911[0] == "bottomup":
if not int(math.floor((max(frame_i-int(end911[2]),1))/int(end911[1]))) > len(net.layers)-2:
end = convallnamez[(len(mahnamez)-int(math.floor((max(frame_i-int(end911[2]),1))/int(end911[1]))))-1]
else:
invertdirboi = not invertdirboi
end = convallnamez[0]
if end911[0] == "topdown":
if not int(math.floor((max(frame_i-int(end911[2]),1))/int(end911[1]))) > len(net.layers)-2:
end = convallnamez[int(math.floor((max(frame_i-int(end911[2]),1))/int(end911[1])))]
else:
invertdirboi = not invertdirboi
end = convallnamez[len(mahnamez)-1]
if stepSize.startswith("@"):
if not end.endswith(" "):
stepSize=stepSize+" "
seppsize69=stepSize[1:len(stepSize)-1]
stepsize911=seppsize69.split(" ")
if stepsize911[0] == "up":
if float(stepsize911[2])>frame_i2:
stepSize69=str(float(stepsize911[3])+float(stepsize911[1])*(frame_i2-float(stepsize911[2])))
else:
stepSize69=str(float(stepsize911[3]))
if stepsize911[0] == "down":
if float(stepsize911[2])>frame_i2:
stepSize69=str(float(stepsize911[3])-float(stepsize911[1])*(frame_i2-float(stepsize911[2])))
else:
stepSize69=str(float(stepsize911[3]))
else:
stepSize69=stepSize
octaves = [preprocess(net, base_img)]
for i in xrange(octave_n-1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in xrange(iter_n):
make_step(net, end=end, clip=clip, objectiveGuide=objectiveGuide,step_size=float(stepSize69), **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
#showarray(vis)
print(frame_i2, frame_i69, octave, i, end, vis.shape)
clear_output(wait=True)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
mylizt = []
s = 0.012 # scale coefficient
angletm = 0.24
if not os.path.isfile(fldr+"/1.png"):
for myfile in os.listdir(fldr):
if os.path.isfile(fldr+'/'+myfile):
mylizt.append(myfile.replace(".png",""))
if len(mylizt)>0:
mylizt.sort(key=lambda item: (int(item.partition(' ')[0])
if item[0].isdigit() else float('inf')))
frame = np.float32(PIL.Image.open(fldr+'/'+mylizt[len(mylizt)-1]+'.png'))
#frame = np.float32(PIL.Image.open('66.jpg'))
h, w = frame.shape[:2]
frame = nd.affine_transform(frame, [1-s,1-s,1], [h*s/2,w*s/2,0], order=1)
frame_i = 1+int(filter(str.isdigit, mylizt[len(mylizt)-1]))
if len(mylizt)==0:
frame = np.float32(PIL.Image.open(defimage69))
h, w = frame.shape[:2]
frame_i = 1
else:
mytmframe=1
while os.path.isfile(fldr+"/"+str(mytmframe)+".png"):
mytmframe+=1
frame = np.float32(PIL.Image.open(fldr+'/'+str(mytmframe-1)+'.png'))
#frame = np.float32(PIL.Image.open('66.jpg'))
h, w = frame.shape[:2]
frame = nd.affine_transform(frame, [1-s,1-s,1], [h*s/2,w*s/2,0], order=1)
frame_i = mytmframe
# print(str(os.path.isfile('/output69/'+str(frame_i)+'.png')))
#while os.path.isfile('/output69/'+str(frame_i)+'.png')
# frame_i+=1
def shift_hue(arr,hout):
hsv=rgb_to_hsv(arr)
hsv[...,0]+=hout
rgb=hsv_to_rgb(hsv)
return rgb
if loadmodel and loadrule:
#guide = deepdream(net, np.float32(PIL.Image.open('11.jpg')),-1,1,'inception_4b/3x3', objectiveGuide=objective_L2)
guide = np.float32(PIL.Image.open('ncavelr.jpg'))
#guide = deepdream(net, guide, -69, 1, 'inception_4b/3x3', objectiveGuide=objective_L2)
#showarray(guide)
print('Forwarding guide.')
def reobjective():
h, w = guide.shape[:2]
src, dst = net.blobs['data'], net.blobs[end]
src.reshape(1,3,h,w)
src.data[0] = preprocess(net, guide)
net.forward(end=end)
guide_features = dst.data[0].copy()
return guide_features
end = 'inception_4b/3x3'
mypool = multiprocessing.Pool()
try:
mahrezult=mypool.apply_async(reobjective)
while not mahrezult.ready():
pass
guide_features=mahrezult.get()
except (KeyboardInterrupt, SystemExit):
sys.exit()
def objective_guide(dst):
x = dst.data[0].copy()
y = guide_features
ch = x.shape[0]
x = x.reshape(ch,-1)
y = y.reshape(ch,-1)
A = x.T.dot(y)
dst.diff[0].reshape(ch,-1)[:] = y[:,A.argmax(1)]
print('DeepDreaming...')
def zoom_at(img, x, y, zoom):
w, h = img.size
zoom2 = zoom * 2
img = img.crop((x - w / zoom2, y - h / zoom2,
x + w / zoom2, y + h / zoom2))
return img.resize((w, h), PIL.Image.BICUBIC)
def resizeme(img, x, y):
img = img.crop((0,0,min(img.size[0],x),min(img.size[1],y)))
return img.resize((x, y), PIL.Image.BICUBIC)
#help(PIL.Image.Image.resize)
'''if not os.path.isfile("filezrc.txt"):
mytexttm = open("filezrc.txt","w+")
else:
mytexttm = open("filezrc.txt","a+")
'''
neuspechtm=0
def restartmetm():
try:
pmy = psutil.Process(os.getpid())
for handler in pmy.get_open_files() + pmy.connections():
os.close(handler.fd)
except Exception, e:
logging.error(e)
pythontm = sys.executable
os.execl(pythontm, pythontm, *sys.argv)
#origframe = np.float32(PIL.Image.open(defimage69))
#origframe = nd.affine_transform(origframe, [1+(s*4),1+(s*4),1], [h*s/2,w*s/2,0], order=1)
maxnum=420
if frame_i<maxnum+1:
for i in xrange((maxnum+1)-frame_i):
#frame = shift_hue(frame,2/360)
if not os.path.isfile(fldr+"/"+str(frame_i)+".png"):
try:
#asyncframe = mypool.apply_async(deepdream, args=(net, frame, frame_i, 'inception_4b/3x3'), kwds={'objectiveGuide': objective_guide})
#while not asyncframe.ready():
# pass
#for myiter in xrange(2):
if loadmodel:
drframe = deepdream(net, frame, frame_i, 1, myconv69, objectiveGuide=objective_L2,iter_n=iterN,octave_n=octaveN)
else:
drframe = frame
#drframe = cv2.addWeighted(drframe,0.84,origframe,0.16,0)
except (KeyboardInterrupt, SystemExit):
sys.exit()
#frame = asyncframe.get()
#myimg=zoom_at(myimg,myimg.width/2,myimg.height/2,1+s)
##mytexttm.write("##boi "+str(frame_i)+"\n"+str(frame)+"\n")
if not np.isnan(drframe.any()):
frame=drframe
neuspechtm=0
myimg=PIL.Image.fromarray(np.uint8(frame))
myimg.save(fldr+"/"+str(frame_i)+".png")
if os.path.getsize(fldr+"/"+str(frame_i)+".png")/1024<8:
os.remove(fldr+"/"+str(frame_i)+".png")
restartmetm()
#frame = nd.rotate(frame,angletm)
frame = nd.affine_transform(frame, [1-s,1-s,1], [h*s/2,w*s/2,0], order=1)
#frame = nd.shift(frame, np.array([1.4, 1.4, 0]))
#myimgtm=PIL.Image.fromarray(np.uint8(frame))
#myimgtm=resizeme(myimgtm,myimg.size[0],myimg.size[1])
#frame = np.float32(myimgtm)
frame_i += 1
else:
neuspechtm+=1
if neuspechtm==3:
setnettm()
if neuspechtm>3:
restartmetm()
Python links
- Learn Python: https://pythonbasics.org/
- Python Tutorial: https://pythonprogramminglanguage.com