Article Outline
Example Python program Study_TextGen.py Python version 3.x or newer. To check the Python version use:
python --version
Modules
- from future import print_function
- import numpy as np
- import random
- import sys
- from keras.models import Sequential
- from keras.layers import Dense, LSTM, Activation, Dropout
- from keras.optimizers import RMSprop
Methods
- def pred_indices(preds, metric=1.0):
Code
Python example
from __future__ import print_function
import numpy as np
import random
import sys
from keras.models import Sequential
from keras.layers import Dense, LSTM, Activation, Dropout
from keras.optimizers import RMSprop
path = 'RomeoAndJuliet.txt'
text = open(path, encoding='utf-8').read().lower()
characters = sorted(list(set(text)))
print('corpus length:', len(text))
print('total chars:', len(characters))
char2indices = dict((c, i) for i, c in enumerate(characters))
indices2char = dict((i, c) for i, c in enumerate(characters))
maxlen = 40
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
sentences.append(text[i: i+maxlen])
next_chars.append(text[i + maxlen])
print('nb sequences:', len(sentences))
X = np.zeros((len(sentences), maxlen, len(characters)), dtype=np.bool)
y = np.zeros((len(sentences), len(characters)), dtype=np.bool)
for i, sentence in enumerate(sentences):
for t, char in enumerate(sentence):
X[i, t, char2indices[char]] = 1
y[i, char2indices[next_chars[i]]] = 1
model = Sequential()
model.add(LSTM(128, input_shape=(maxlen, len(characters))))
model.add(Dense(len(characters)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer=RMSprop(lr=0.01))
print(model.summary())
def pred_indices(preds, metric=1.0):
preds = np.asarray(preds).astype('float64')
preds = np.log(preds) / metric
exp_preds = np.exp(preds)
preds = exp_preds / np.sum(exp_preds)
probs = np.random.multinomial(1, preds, 1)
return np.argmax(probs)
for iteration in range(1,100):
print('-' * 40)
print('Iteration', iteration)
model.fit(X, y, batch_size=128, epochs=1)
start_index = random.randint(0, len(text) - maxlen - 1)
for diversity in [1.5]:
print('\n----- diversity:', diversity)
generated = ''
sentence = text[start_index: start_index + maxlen]
generated += sentence
print('----- Generating with seed: "' + sentence + '"')
sys.stdout.write(generated)
for i in range(400):
x = np.zeros((1, maxlen, len(characters)))
for t, char in enumerate(sentence):
x[0, t, char2indices[char]] = 1.
preds = model.predict(x, verbose=0)[0]
next_index = pred_indices(preds, diversity)
pred_char = indices2char[next_index]
generated += pred_char
sentence = sentence[1:] + pred_char
sys.stdout.write(pred_char)
sys.stdout.flush()
print("\nOne combination completed \n")
Useful Links
- Articles: https://python-commandments.org/
- Python shell: https://bsdnerds.org/learn-python/
- Tutorial: https://pythonprogramminglanguage.com/