Article Outline
Example Python program logistic_regression_log_loss.py Python version 3.x or newer. To check the Python version use:
python --version
Modules
- import tensorflow as tf
- import matplotlib.pyplot as plt
- import numpy as np
Code
Python example
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
samples = 1000
data = [1e-2*float(i) for i in range(-samples, samples)]
label = [1 if i>3.14 else 0 for i in range(-samples, samples)]
plt.scatter(data, label, 1, 'r')
x = tf.placeholder(tf.float32)
y_ = tf.placeholder(tf.float32)
w = tf.Variable(0.0, dtype=tf.float32)
b = tf.Variable(0.0, dtype=tf.float32)
y = tf.nn.sigmoid(w*x + b)
loss = tf.losses.log_loss(y_, y)
train_op = tf.train.GradientDescentOptimizer(1e-2).minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(10000):
_, _loss = sess.run([train_op, loss], {x: data, y_: label})
if i%100 == 0:
_pred = sess.run(y, {x: data})
plt.scatter(data, label, 1, 'b')
plt.scatter(data, _pred, 1, 'r')
print('step: {}, loss: {}'.format(i, _loss))
Useful Links
- Articles: https://python-commandments.org/
- Python shell: https://bsdnerds.org/learn-python/
- Tutorial: https://pythonprogramminglanguage.com/