str() 与 json.dumps()的区别
<!--more-->
>>> data = {'jsonKey': 'jsonValue',"title": "hello world"}
>>> print json.dumps(data)
{"jsonKey": "jsonValue", "title": "hello world"}
>>> print str(data)
{'jsonKey': 'jsonValue', 'title': 'hello world'}
>>> json.dumps(data)
'{"jsonKey": "jsonValue", "title": "hello world"}'
>>> str(data)
"{'jsonKey': 'jsonValue', 'title': 'hello world'}"
In fact, I am more interested in their difference in single quote and double quote in output strings. It seems that I already know one difference between them (mentioned above) and whether json.loads() can load the output string.
json.dumps() is much more than just making a string out of a Python object, it would always produce a valid JSON string (assuming everything inside the object is serializable) following the Type Conversion Table.
For instance, if one of the values is None, the str() would produce an invalid JSON which cannot be loaded:
>>> data = {'jsonKey': None}
>>> str(data)
"{'jsonKey': None}"
>>> json.loads(str(data))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.py", line 338, in loads
return _default_decoder.decode(s)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/decoder.py", line 366, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/decoder.py", line 382, in raw_decode
obj, end = self.scan_once(s, idx)
ValueError: Expecting property name: line 1 column 2 (char 1)
But the dumps() would convert None into null making a valid JSON string that can be loaded:
>>> import json
>>> data = {'jsonKey': None}
>>> json.dumps(data)
'{"jsonKey": null}'
>>> json.loads(json.dumps(data))
{u'jsonKey': None}
In fact in (I believe most) implementations of Python, str(object) wraps strings in single quotes, which is not valid JSON.
An example:
In [17]: print str({"a": 1})
{'a': 1}
str(boolean) is also not valid JSON:
In [18]: print str(True)
True
__str__, can, however, be overridden in user defined classes to ensure that objects return JSON representations of themselves.
字典转字符串(dict to str)
If your dictionary isn't too big maybe str + eval can do the work:
dict1 = {'one':1, 'two':2, 'three': {'three.1': 3.1, 'three.2': 3.2 }} str1 = str(dict1)
dict2 = eval(str1)
print dict1==dict2
You can use ast.literal_eval instead of eval for additional security if the source is untrusted.
import json
convert to string
input = json.dumps({'id': id })
load to dict
my_dict = json.loads(input)
> 字符串转字典(str to dict)
```python
# str to dict
In [33]: import ast
In [34]: ast.literal_eval("{'x':1, 'y':2}")
Out[34]: {'x': 1, 'y': 2}
转换已转义的字符串转字典(str to dict)
>>> a = '{\\"name\\":\\"michael\\"}'
>>> print a
{\"name\":\"michael\"}
>>> type(json.loads('“' + a + '”'))
<type 'unicode'>
>>> type(json.loads(json.loads('“' + a + '”')))
<type 'dict'>
# 第一次json.loads是将里面的\"这样的字符串转为"(只有一个双引号),第二次再将其转为一个字典,记得不要漏掉前面先加双引号。
pymongo
根据ObjectId进行查询from bson.objectid import ObjectId [i for i in dbm.neo_nodes.find({"_id": ObjectId(obj_id_to_find)})]
> float nan
```python
>>> import math
>>> x=float('nan')
>>> math.isnan(x)
True
# The usual way to test for a NaN is to see if it's equal to itself, since nan isn't equal anything.
def isNaN(num):
return num != num