An I/O Project: Building a Command Line Program
The Rust Programming Language Foreword Introduction
An I/O Project: Building a Command Line Program
This chapter is a recap of the many skills you’ve learned so far and an exploration of a few more standard library features. We’ll build a command line tool that interacts with file and command line input/output to practice some of the Rust concepts you now have under your belt.
Rust’s speed, safety, single binary output, and cross-platform support make it
an ideal language for creating command line tools, so for our project, we’ll
make our own version of the classic command line tool grep
(globally
search a regular expression and print). In the simplest use case,
grep
searches a specified file for a specified string. To do so, grep
takes
as its arguments a filename and a string. Then it reads the file, finds lines
in that file that contain the string argument, and prints those lines.
Along the way, we’ll show how to make our command line tool use features of the
terminal that many command line tools use. We’ll read the value of an
environment variable to allow the user to configure the behavior of our tool.
We’ll also print to the standard error console stream (stderr
) instead of
standard output (stdout
), so, for example, the user can redirect successful
output to a file while still seeing error messages onscreen.
One Rust community member, Andrew Gallant, has already created a fully
featured, very fast version of grep
, called ripgrep
. By comparison, our
version of grep
will be fairly simple, but this chapter will give you some of
the background knowledge you need to understand a real-world project such as
ripgrep
.
Our grep
project will combine a number of concepts you’ve learned so far:
- Organizing code (using what you learned about modules in Chapter 7)
- Using vectors and strings (collections, Chapter 8)
- Handling errors (Chapter 9)
- Using traits and lifetimes where appropriate (Chapter 10)
- Writing tests (Chapter 11)
We’ll also briefly introduce closures, iterators, and trait objects, which Chapters 13 and 17 will cover in detail.